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1. INTRODUCTION

1.1. tatement of Problems

The principal objects of the investigation reported here are,

first, to study gqualitative probability relations on Boolean algebras,

and secondly, to describe applications in the theories of probability

logic, information, automata, and probabilistic measurement.

Several authors (for example, B, de Finetti, B. O. Koopman,

L. J. Savage, D. Scott, P. Suppes) have posed the following specific

problems:

(Pl) Given a Boolean algebra %4 and a binary relation 2 on 24 P
under what conditions on 2 does there exist a probability

measure P on 2‘{{ satisfying
A % B &= P(A) <P(B)

for all A, Be & 2

(PE) Given a Boolean algebra % and a binary relation > on % P

under what conditions on > does there exist a probability

measure P on &€ and a real number O < & < 1 satisfying
A > B = P(4) >P(B) +&

for all A,BGZZ?
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(P,) Given a Boolean algebra #% and a quaternary relation 2

3

on £ , under what conditions on < does there exist a con-

ditional probability measure P oOn et satisfying
A/B X /D <=> P(4/B) < P(C/D)
for all A, B, C, De &  for which P(B) * P(D) >0 ?
(Ph) Given a Boolean algebra El and a quaternary relation e
on ZQ?, under what conditions on = does there exist a

conditional probability measure P on &€ and a real

number 0 < & < 1 satisfying
a/B > ¢/D <> P(4/B) > P(C/D) + 7

for all A, B, C, D e &£ for which P(B) * P(D) > 0 ?

Chapter 2 answers problems (PE)’ (PB)’ and (Ph)' The axioms
for entropy originally given by Shannon in 1948 have been replaced
several times subsequently by weaker conditions. In each case the
axiomatization of the basic information-theoretic notions is pre-

sented as a collection of functional eguations. In contrast, a

new approach is proposed here; an approach which is an application
of the techniques developed in the study of probabilistic relational
structures. We shall give axiomatic definitions of the concepts

of qualitative information and gualitative entropy structure; and

we shall study some of their basic measurement-theoretic properties.

For this purpose we also set down axiomatization for the gqualitative

probabilistic independence relations on both the algebra of events

and the algebra of experiments.
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Many methodologists have in recent years been leaning towards
the view that as long as there is no satisfactory theory of the
probability theory of first-order formulas, the rather delicate
questions of inductive logic, confirmation theory and scientific
~--method are not likely to be satisfactorily answered. Here it is
argued that, if there is any truth in this view, a purely quali-
tative treatment of the probabilities of quantified formulas is a
more promising line of attack than the quantitative theories
propagated by Carnap and others.

In the mathematical theory of probability conditional

probabilities are conditional probabilities of events of the basic

algebra; in no sense are they probabilities of conditional events.

But it seems an interesting problem whether they could be con-
structed in this second way. A definition of an algebra of such

conditional events is given here which conforms to the intuitive

concepts used by probability. Once we have a qualitative theory
of probability, it is natural to ask if we can treat qualitatively
all problems formulated in terms of a probability space. The al-
gebraic character of probabilistic automata makes this a promising
field of application, and in this work definitions of qualitative
probabilistic automata are suggested. As further applications
several empirical structures relevant in physics and social sciences
are studied.

The investigation has produced many new problems in this field,

and the main ones are listed in the conclusion.




1.2. Previous Results

There are several ways of introducing the concept of proba-
bility. 1In all of them, throughout the long history of the suvject,

the intention has been to answer the following two basic questions:

(Ql) What are the entities, called events, which are supposed to

be probable?

(Q2) What kind of function or relation, called probability, is

attributed to the events?

The main answers are usually referred to as measure-theoretical

(H. Steinhaus [1], A. N. Kolmogorov [23]), limiting frequency

(R. von Mises {3], A. Wald [4]), subjectivist (B. de Finetti [5],

L. J. Savage [6]), logical (R. Carnap [7], H. Jeffreys [8]) and

finally, methodological (R. B. Braithwaite [9]). Motivations for

some of these answers to questions (Ql) and (Q2) are hidden in the
complex problem of rationality.

The answer to question (Ql) is algebraic: the set of events,
structurally speaking, forms at least a lattice, and almost always
a Boolean algebra, or, equivalently, a field of sets. There is
less agreement on whether the events themselves should be inter-
preted as sets, statements, or perhaps sets of statements. But
there is no obvious reason why all these should not be possible.

Quecstion (Q2) causes real trouble. 1In fact, this question

is Jjust what the foundations of probability are all about.
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Tn this work we shall restrict ourselves to the study of the

relationships between the formal structures of the measure-theoretical

and subjectivist approaches.

De Finetti's subjectivist probability theory is written in terms
of a binary relation 2 , defined on some Boolean algebra Z 4
of events. The intended interpretation of =% , called the quali-

tative probability relation, is as follows:

Ir A, Be £ , then A = B means that the event A

is (a priori) not more probable than the event B.

Tt is useful to define A % B as = B & A, and A~ B
as A 2 B & B = A
The celebrated axioms of de Finetti's probability theory impose

certain constraints on the qualitative probability relation, in order

to guarantee the existence of a numerical probability measure on 124
in the standard sense; this problem was called (Pl) in Section 1.1.
Tt turned out that de Finetti's conditions were necessary, but not
sufficient; (Pl) was finally solved for the finite case by C. H. Kraft,
J. W. Pratt, and A. Seidenberg in 1959 [10]. A more simple general
solution was found by Scott in 1964 (D. Scott [11]). Scott has also
obtained a solution for infinite Boolean algebras (D. Scott [12]).

The intended interpretation of the relation Y in problem (P2)

is as follows:

A >~ B <&=> +the event A is definitely more probable

than event B (A, Be £€ ).

Obviously > is intended to be a semiordering relation; we shall

call it a semiordered qualitative probability relation.

p)




Problem (P2) was raised by Suppes, and for finite Boolean
algebras was first considered by J. H. Stelzer in his doctoral
dissertation (J. H. Stelzer [13]), where a partial solution was
given. The solution is deficient in that the necessary and suffi-
cient conditions are not stated purely in terms of the qualitative
relation > (see Stelzer [13], Theorem 3.14, p. 68); moreover,
the proof of the main theorem (igig., Theorem 3.8, p. 52) is invalid.

B. 0. Koopman {14], A. Shimony [15], and more recently P. Suppes
[16] and R. D. Luce, investigated a mofe complicated case, consider-
ing conditional events. Well known is Koopman's relatively strong

and camplicated system of axioms for the binary relation 4 , which

is interpreted as follows:

A/B 4 C/D <=3 the event A, given event B is not

more probable than the event C, given event D, where
A, B, C, Dellf .

For criticism, applications to confirmation theory, and a
further review of this problem, we refer to Shimony [15]. We should
perhaps mention here that Koopman's approach has the following
defects. It contains axioms like A/B & C/D =>(Bc A =D c C),

so that the qualitative probability relation imposes certain Boolean

ey Tr—

relations on the events; This is implausible if < is not connected,

that is,

A/B % ¢/D VvV C/D £ A/B,

P
LRS00 o e St

which for some reason is the only case Koopman is prepared to consider.
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" However, one of his axioms pretty well amounts to postulating
the existence of equi-probable partitions of arbitrary events, which

is impossible in non-trivial finite cases.

gr By far the best system of axioms known to the author for the

u relation 2 , the qualitative conditional probability relation,

}g was given by Suppes [16]. Unfortunately, his axioms are necessary,
: but not sufficient. This is obvious, since they are first-order

%, axioms; and even in the case of (Pl) a second-order axiom is needed.
- Besides that, without sufficient conditions we have no way of repre-

PR

L)

senting one probability structure by another.
‘ Problem (Ph) was first discussed in Suppes [16] (in connection

with the problems of causality), where necessary conditions are

——

given for the relation > , the semiordered qualitative conditional

probability relation. The intended interpretation is obvious:

A it
.
. - #

A/B > C/D means that event A given event B is definitely more

probable than event C given event D.

o ——
‘

As far as the author knows, no solutions to the problems (P2),

Wy Ty
(- '

(P5)’ and (Ph) have yet been given.

We would like to emphasize that we shall primarily be inter-
{j ested in the cases where the Boolean algebra Z%i is finite. For
atomless Boolean algebras, for instance, it is quite easily shown
that, under certain rather natural conditions on = , there is
only one probability measure compatible wi@h 2 in the sense of
problem (Pl). Such a result for 5talgebras was given by C, Villegas

— [17] as a generalization of certain investigations of L. J. Savage.
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In probability theory, or rather in its foundations, there
has long been a trend towards identifying events with formulas of
certain first-order formalized languages. Among principal pro-
ponents of this idea we can certainly count J. M. Keynes, H. Jeffreys,
H. Reichenbach, R. Carnap, and J. Zukasiewicz.

It is of course formally possible to ascribe probability to
formulas, since, under rather simple conditions, they form a Boolean
algebra. Yet a perfect solution to this problem for (quantified)
formulas is not as simple as this makes it sound.

For example, if we investigate the theory of linear ordering -

structures, )72 = <M, <>, we can ask for the probability

of the formula x <y for x, y € M. If we say, for instance,
that P(x <y) = 1/2, then this should mean in the frequency
interpretation that by drawing in a given way the elements x, y
from M, we obtain pairs which in one half of the cases will satisfy
the formula x <y. But, although P(x < y) may equal 1/2,
nevertheless P( E{ '§{(x <y)) can hardly be anything but O;
for this universal sentence is false in any non-trivial ordered
set. How about the probability of g? ‘E!(x < y) ? It depends,
of course, on the structure 7 in question, If ¥ is a
suitable structure, then the formula will be true or false in it,
and hence will have probability 1 or O.

A theory that can only attribute probabilities of O or 1 to
sentences is inadequate for almost all applications. But alterna-

tive approaches may lead to more satisfactory probability assignments.

One way is to assume that we are given a set of possible worlds
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from which one world can be chosen at random. In this world we
perform another random drawing, this time of elements of the world.
Then the probability of a formula is equal to the probability of
its being satisfied by the double drawing. DMore technically, we
first draw a model jgﬁg‘in accordance with a given probability
measure Vv on the family irJ1 of all models under consideration;
and then from 2?2;, again in accordance with a probability meas-
ure Wyp &lven in.‘yyzi, we draw a set of elements.

Every formula ¢ has a probability u?ﬂf(Q) in the selected
model 7 Keeping @ constant, and allowing the model ;ﬁh{
to vary, we obtain a random variable LQ”Z(@), for which we can
compute the expected value E u/pf(@) with respect to the prob-

ability measure v , defined on the family ﬂv1 . Hence, the

probability of the formula & 1is given by

P(®) = fum(’??t’m ) d v, where

M
P [0] = {v: @ is true in ¢ under valuvation v} .

In the case of conditional probabilities, the conditional
expectation would do the job. These ideas are due to J. fos [18].
Gaifman [19] also developed a theory of probabilities on
formulas of arbitrary first-order languages, and proved that a
rather natural way of extending to quantified formulas a probability
measure defined on molecular formulas was in fact unique. Scott
and Krauss [20] then generalized Gaifman's method to infinitary
languages. Ryll-Nardzewski realized that assigning probabilities
to formulas is just a special case of the well-known method of

assigning values in complete Boolean algebras.

9
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It should be pointed out that, whatever its other merits,
probability logic by no means exhausts the problems in probability
theory. On the contrary, nearly all the methods and results of
the mathematical theory, especially those involving random variables,
expectations, and limits, far outstrip probability logic. Never-
theless, as mentioned above, there are many interesting results,
several of them peculiar to this field.

The author's aim will be to survey these developments from the
point of view of qualitative probability theory, and to apply them
to probabilistic measurement theory.

Automata theory, as a part of abstract algebra, is a well-
developed discipline, whereas probabilistic automata theory is
still in a more or less primitive state. The most important work
on this problem is due to M. O, Rabin and D. Scott [21] and
P, H, Starke [22]; and qualitative versions of some of their def-

initions will be given in Chapter L.

l.3. Contribution of this Research

Most of the contributions have already been described; here
they are briefly summarized.

The central mathematical results are the solutions of (PQ)’
(P5), and (Ph)°

The author proposes a new interpretation of the conditional
event A/B. Systematic axiomatic development of conditional prob-

ability theory has been done by A, Reényi [23, 24] and A. Csaszar [25].

10
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In the present author's opinion, the answer to (QE) for the con-
ditional case cannot be satisfactorily answered if question (Ql)
for conditional events is not already answered.

Using the proof technique of problems (P2) - (Ph) the author
succeeded in obtaining several representation theorems for informa-
tion and entropy structures. In connection with these structures

considerable attention has been devoted to the qualitative inde-

pendence relations on events and on experiments.

In the final chapter certain results of probability logic are
handled anew by qualitative methods. Qualitative probabilistic
notions are also applied to probabilistic automata theory and

probabilistic measurement structures.

1.4, Methodological Remarks

One of the more fruitful ways of analyzing the mathematical

structure of any concept is what we here call the representation

method.

This method consists of determining the entire family of
homomorphisms or isomorphisms from the analyzed structure into
a suitable well-known concrete mathematical structure. The work
is usually done in two steps: first, the existence of at least
one homomorphism is proved; secondly, one finds a set or group of
transformations up to which the given homomorphism is exactly

specified. The unknown and analyzed structure is then represented

by a better known and more familiar structure, so that eventually,

the unknown problem can be reduced to one perhaps alréady solved.

11
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Another advantage of this method is that it handles problems
of empirical "meaning" and content in an extensional way. For it
is a rather trivial fact that any mathematical approach to such &
problem will give the answer at most up to isomorphism. Hence all
meaning problems are extramathematical questions. For exémple,
interpretation of the concept of probability is beyond the scope
of the Kolmogorov axioms.

Yet, without Permanently flying off on a tangent, we would
like to indicate by an example (anyway needed in the sequel) how
by using the idea of representation of one structure by another
one can handle the "meaning" problem inside mathematics.

The next two chapters will deal with certain mathematical
structures. The problems these structures pose are too difficult
to answer immediately, and we shall therefore translate the problem
into geometric language by means of the representation of relations
by cones in a vector space. From this geometric language we trans-
late again into functional language, by means of the representation

of cones by positive functionals. Here the problem is solved, and

we translate the result back into the original language of relations.
This is one of the most efficient ways of thinking in mathematics.

It should be noted, however, that the translation is not always re-

versible. The representing structure may keep only one aspect of

the original structure, but this has the advantage that the problem

may be stripped of inessential features, and replaced by a familiar

type of problem, hopefully easier to solve. Of course, essential

features may be lost. In spite of this, the method of sequential

12




representation has proved its worth in a great variety of successful
applications.

Toke as a concrete example the relational structure of the
qualitative probability < ﬁ%” 2 > which will be discussed

extensively in Chapter 2; any empirical content assigned to the

probability structure < 4 A P 2 > is carried through the chain

of homomorphisms: relational entity ~"\geometric entity >

functional entity, to the probability measure P on 225 . The

measure P may thus acquire empirical content on the basis of the
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structure < 225‘, =< > which we assume already to have empirical

MR A

% content via other structures or directly, by stipulation.
In general, the empirical meaning or content of an abstract,

or so-called theoretical structure (model) is given through a more

or less complicated tree or lattice of structures together with
their mutual homomorphisms (satisfying certain conditions), where

some of them, the initial, concrete, or so-called observational

ones, are endowed with empirical meanings by postulates.

Note that the homomorphism is here always a special function.

For example, in the case of probability, P satisfies not only the

homomorphism condition (which is relatively simple), but also the

axioms for the probability measure. Thus the axioms for the given

structure are essentially involved in the existence of the homo-

morphism. 1In this respect, the representation method goes far
beyond the ordinary homomorphism technique between similar structures,

or the theory of elementarily equivalent models.

13




The "meaning" of a given concept can be expressed extensionally
by the lattice of possible representation structures connected mu-
tually by homomorphisms (with additional properties) and representing

always one particular aspect of the concept.

We do not intend to go into this rather intricate philosophical
subject here. The only point of this discussion was to emphasize
the methodological importance of our approach to concepts like

qualitative probability, information and entropy.

2. QUALITATIVE PROBABILITY STRUCTURES

2.1. Algebra of Events

We start with some prerequisites for answering the question (Ql)
in Section 1.1. Probability theory studies the mathematical proper-
ties of the structure < o@’, Q >, where a@/ is a Boolean algebra
and Q is a probability measure on ﬁ’ ; or the structure
/2-\ = <9, 124 , P>, where Q is a nonempty set of sample

points, £ is a field of subsets of 0 , called the field of

events, and P is a probability measure on Z’Z .

These two structures, <J(§’, Q > and /3\ are closely related
by the Stone's Representation Theorem, which says that every Boolean
algebra OG’ is isomorphic to a field of sets ZZS , that is,
;[;—3 Z’ZS (= ?./?/)

Those authors who work with the structure <J@ , Q> do so
largely because no commitment is made on the character of the elements
of a Boolean algebra (it does not really matter whether they are

sets or propositions or something else); a further advantage is that

1k
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one can treat the probability as a strictly positive measure,- and
forget about the events of measure zero, which have no probabilistic
meaning anyway. On the other hand, the concept of a random variable
can hardly be defined in this structure in a direct way. ©So for
applications tne second structure, [ﬁ\ , is more convenient. An
interesting attempt to reduce the notion of a random variable to
that of a g-homomorphism of a field of Borel sets of real numbers
into a Boolean c-algebra was made by R. Sikorski [26]. Though this
succeeds, nothing more general is gained by it, as thus it really -
matters little which structure we take as our primary object of
study.

There are good reasons to‘keep both structures in mind; one
is that there is a prdbabilistic—interpretation of the Stone iso-~
morphism between the Boolean algebras Gci and fﬁz?.

In particular, if we start with the model <5{;3 Q> , and if
CK;'E 22[8 as above, then (see Hal mos [27]) Zﬁfs is the field
of closed-and-open (clopen) sets of a zero-dimensional (or totally
disconnected) compact Hansdorff space QS which is associated with
the family of all prime ideals of‘OGp, and therefore also ultra-
filters of JS; .

Without loss of generality, we can think of QS as the set
of ultrafilters of dGL . On QS we then can define random variables
in the standard way, so that from <06=', Q > we can get < QS, ZZS’ 1?9>
by adopting the measure Q into PS by isomorphism. The converse

should be obvious.
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By analogy with mathematical logic, where the collection of
all formulas of a formalized first-order language is, roughly speaking,

identified with a Boolean algebra, a theory is identified with a

filter, a complete theory with an ultrafilter, and so on, we shall

provide similar, probabilistic identifications.

For this purpose let A be a standard probability space as

described above.
In current textbooks of probability theory it is customary

to consider the notion of the occurrence of an event as a monadic

primitive predicate O.
If ©®A means that event A occurs, then it is rather trivial

to check that the following formulas are valid for all A, B € % :

(i) eq,

(ii) AcCB & @A => @B,
(iii) ©eA & OB => GA N B,

(iv) ®©eA V @A .

Set-theoretically this means that the set of all events occurring

at a given trial forms an ultrafilter: v = {a: ea & ac 24 }.

Naturally /\ = {%: A e/ } is a maximal ideal, so that the
set of events which do not occur at a given trial forms a maximal
(or prime) ideal: A = {(A: mes&Aeclf }. But then
Z'/Z = A U v ; that is to say, each trial (or experiment)
decomposes the algebra of events % into two disjoint structures

A aa V.

If we call the outcome of a trial that element w of § which

is the true result of the trial, then the principal ultrafilter \/

16




is generated by the singleton {w} , so that we should write

V({w]) instead of v . Similarly, the prime ideal A is
generated by (w) , so that we shall write A(m) instead of A .
Therefore, any trial can be viewed as an ordered couple

< V({w}), A( {w}) >, where ® is the outcome of the trial.

: Summarizing, we conclude that:

V ({®}) = the set of those events which occur at the outcome ®
of the given trial.
A({w}) = the set of those events which do not occur at the

outcome w of the given trial.

Iet \/ (A) be the filter generated by A; then since

A) =D ({w}),
V() weAv *)

AR T4

1 V (A) = the set of those events which occur in all outcomes weA.
3 Similarly, since A(A) = ﬂ_A(in) s

3 wel

: A(A) = the set of those events which do not occur in any of

the outcomes w®eA.

Especially,

V@) = @) and  A(P) = (#) , hence

the only event which occurs at all possible outcomes is Q , and
the only event which fails to occur at any outcome is £ .

The set of all principal ideals 077= (DN): Acll ) s
isomorphic to X’Z \’9’ = tg , 1f we define in (Qp the Boolean

opeartions as follows:

17




AN+ A = Anus),
ANw - AB = N@rns),
AR = A®B .

Using the analytic properties of the sequences of ultrafilters,

we can give a rigorous definition of the frequency-interpretation
of probability.

The isomorphism ¢ , constructed by Stone, has also a proba-
bilistic interpretation. If A 60(:/“’ , then o(A) = {V :Ac&Qe QS} s
where, as pointed out before, Q. 1is the set of all ultrafilters

S
4
of A¥ . Hence, ®(A) is nothing else but the set of all experiments

(trials) in which A occurs. Obviously o(?) =@y and o(f) = p. '

Having this interpretation in mind, we shall freely use in the
sequel. both the structures <£f, Q > and A =< Q, t’-Z, P>.

Next we shall characterize set-theoretically the notion of a

conditional event. Remember that in probability theory one speaks

A LS R SR O 0 P R A VAL Y

only about the conditional probability of an event (PB(A)) and such

a thing as the probability of a conditional event (P(4/B)).does

not exist, since the entity, conditional event, is not defined.

On the other hand, applied probability is full of interpretations

AT ARSI AR TR NG ARV AT aTRE R AR R WV Gl

of conditional probabilities which encourage us to believe in the

L TR T

existence of conditional events as independent entities.

Rt k2 Co b ibad bi Mol b

The present study needs conditional events for several purposes;
rather than postulate their existence, we honestly set about giving

them a satisfactory set~theoretic definition.
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From the one-one correspondence between filters f and idealsg
we obtain an isomorphism F = & s Wwhere the atoms of F are
the ultrafilters Y/ ({w}), wen.

Using the isomorphism between the lattice of ideals of A

and the lattice of congruence relations on ot s We can introduce

the following equivalence relation on 144 :
AEBmodA <= AUB(—:A (4, Be%);*)
N=1(a:a=088cll).

By duality, we get the congruence relation also for filters:
A=EBmodVV &= AeBey (A, B e &F );*¥)
V=(@:a=08ncltl ).

In particular,
A=Bmod /(C) &> A=Bmod N\ (C) «= AC = BC.

The probabilistic interpretation of the congruence relation = is

the following:

A=Bmod \/ ({w)) &> the events A and B are indistinguishable,

given the outcome w. More generally, A= Bmod \/(C) <=3 the events A

A TETREEA ORISR U SR R VAN R AT 20 ey

and B are indistinguishable, given all the outcomes in C; that is,

AANTE R

BGA €< 6B, given weC.

AR A TR ETE AL INT TS e

We can introduce this indistinguishability relation = into
the algebra of events % by constructing quotient Boolean algebras
%/V(A) or Zrl/ﬁ\ ().

The reader will notice that

U B) = CEp@) = (e2) = /g ().

#)

A Y B denotes symmetric difference, that is, A Y B = AB U AB.
**)A «+B d AB
enotes AB U AB.

19




O
%
7
=
3
E
2
>
>
s
>
4
5
sy
A
}
.
;
e
3
3
:
e

Therefore we shall rule out this pathological Boolean algebra
by putting A £ 8.

On the other hand, the ultrafilters W ({w}) and maximal
ideals [3,(@3?) generate two-element quotient Boolean algebras:

%/V({w]) {0, 14]}= IZ{/A ({w)) where 1 corresponds to
V({w}), and @ to A ({w)]); that is, [2]. = V¥ ({w}) and
(8. = A (D).

We have given plenty of examples that show that it does not
matter whether we consider ideals or filters. Filters are more
convenient for conventional thinkers; we think in terms of occurred
events, rather than the non-occurred ones. From now on, therefore,
we shall work only in terms of filters.

If we put %/A = %/V(A) (A #9), then %/A can be

interpreted as the Boolean algebra of conditional events , condi-

tionalized by event A. Hence for any B e £, B/A is a con-

ditional event, equal to the class of events, indistinguishable from

event B, given the outcomes in A,

By considering %/A (A# P) we restrict the set of possible
outcomes to the set A, Naturally, (V)Z/Q = &Z s so that condi-
tionalization by § is trivial. The conditional event B/A takes
care also of the fact that the probability of the event B depends only
on the intersection of B and A. Thus, if B/A = C/A, then AB = AC,
which is obviously true. If BNEE =(BnA: Aclh) , for
Be % , then it is easy to check that the following isomorphisms

are valid:

20




A@ 2z EZAG) =Bt = EL/g(B). Hence, the study of
w B is the study of the same probability structure as before,
but with the set of possible outcomes restricted.
Now naturally, in order to define a suitable measure P*¥ in
a/ B, given the probability space A , we have to realize that

the conditional event A/B 1is a sure event if and only if it always

occurs, that is, if A ¢ \J (B). Moreover, since P*(A/B) = P*(C/B)
if A/B = C/B, we must have P*(4/B) = P¥(C/B) if P(AB} = P{CB).
Due to the fact, pointed out before, that P*(Q/B) = P*¥(4/B) = 1,
if A ev (B), we are bound to accept P*(A/B) as simply %?—ﬂ
(p(B) > 0).

To sum up, if we are given a probability space A , then any

restriction of the set of possible cutcomes leads to conditionalization

and therefore to an appropriate conditional measure.

It is clear how to interpret the following Boolean operations

in the set of conditional events /B

A/B+ C/B=AUC/B,

A/B* C/B=ANC/B,

A/B = A/B

Similarly, the meaning of the identities A/B = AB/B, AB/BC = A/BC

should be clear enough.

The reader may wonder where the multiplicative law for conditional
probabilities is hidden. It can be checked that
snce (CYc)s/c, (2.1)

which means that we can assign isomorphically A/C/B/C = AB/C/B/C
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to A/BN C. We can also check that the measure in (éﬁyc)/ B/C

* .
should be i*(gBCC (once we are given the measure P¥ in 4 /c)

and that this measure is just the same as P*¥(A/Bn C) in

Zﬁ%%/B N C; hence

Rk AR i LR T e D A X

%

p*(4/B N C) - P*¥(B/C) = P*¥(A N B/C) , (2.2)

if the appropriate algebraic existence conditions are satisfied.
We proceed analogously as in the case of P¥.

Note that (2.1) together with (2.2) state a simple fact, namely,
that iterated restriction of the domain of possible outcomes Q

by B, and then C, amounts to the simultaneous restriction of & by

B and C; that is, its restriction by BN C. (2.2) is the most

important relation between two conditional events, conditionalized

differently. To take the set {A/B : A, B¢ ., B4+ §) and look

for some structure in it is not reasonable; for what can we expect
to get in the set AE%;?{/A , Wwhich is not even a lattice? To take
the direct sum fi%éKZ/A is much more reasonable. We shall
reserve a place fogﬁgiscussion of this algebraic construction in
Section 2.6 on qualitative conditional probabilities. Our main

concern in this section was to give set-theoretic definitions

of the notions of occurrence, trial, and conditional event, and

to explain the main relationships between probability measures on
Boolean algebras and fields of events. An interesting notion of
conditional probability is presented in H. P. Evans and S. C. Kleene
[28]; on the other hand, a radical attempt to uncover some structure

in the set of conditional entities can be found in A. H, Copeland [29].
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0.0, Basic Facts about Qualitative Probability Structures
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Tn this section we discuss the results of Scott (11, 12] con-

1
i
4
{
4
§
:
i

cerning the problem (Pl). The general method applied here goes back

to a theorem of Mazur and Orlicz [30] (see p. 17k, Theorem 2.41).

This theorem is a simple generalization of the well-known Hahn-Banach
theorem on the extention of linear functionals in normed linear
spaces. Mazur and Orlicz's Theorem gives in rather good terms a

necessary and sufficient condition for the solvability of a system

CAREETATRAT A AT T AR AT A A R T 13

of linear inequalities. As an application one could hope to solve

17 AN T IR TR

problems related to ours, provided that they involve showing the

B

existence of a linear functional on a given set which would homo-

A

morphically match a relation defined on this set. Because of its

TR TIIEE TN

importance, we shall presently quote the generalized version of

this theorem.

Before we proceed to the details on the relation between

ordered structures and linear functionals we shall recall briefly

a couple of notions from the theory of ordered vector spaces needed

in the sequel.

A real vector space equipped with an ordering compatible with

its linear structure is called an ordered vector space. More

specifically, given a real vector space zbﬂ’and a binary relation <
on

vector space if and only if

then the couple <<'2?,‘£ > is called an ordered real

b

(i) A is reflexive, transitive, connected, and

antisymmetric;

.o g
(i1) \/vl, V2,W€(//[Vl=-2\ vV, =—> vl+w£ v2+w];
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\v/ ¥)
s ss 4+
(iii) Vs Voy O € Re [vl R V= v, < O v2] .

An equivalent definition can be given in terms of a cone. By

a positive cone in a vector space, we mean a nonempty subset ('3’ g?f’
such that the following geometric properties are satisfied for all
Vv, W€ 2?/

(a) v,weé’=—‘>v+weé’;

(b) CecRe &velk = cavelf ;

(c) vek & -vel => v =0

@ vel v ~ve& .

The link between the ordering relation = and the cone C

is given by
v wew-vel forallv,we/zf/.

Hence, the notion of an ordered vector space can be given equiv-

alently in terms of the structure < Z)V, C: > o The reader will

TERRTELRAIRRIL AW AT Y ISRV TR W AR AT O T T

reierber ovr discussion of the translation of relation-theoretic

TR AR

notions into geometric ones in Section 1.4, If 6 satisfies

TR BT T

only (a) and (b), it is called a wedge. Hence, in particular, a
wedge is a convex subset of ,L’?/ . If the ordering A in 2//

allows us to construct a supremum and infimum for each subset of 7* 5

g then < Z’a/, A > is called a lattice-ordered vector space.

., *
) Re* denotes the set of non-negative real numbers.
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Since there is a close relationship between the ordering and
the topological structure of the ordered vector space, this is
reflected in the specific nature of linear mappings on these spaces,

Thus we can translate the geometric notions into functional ones,

as pointed out in Section 1.4. This fact is hidden in the Mazur

and Orlicz generalization of the classical Hahn-Banach Theorem.

4
THEOREM 1 (Mazur-Orlicz) Let v be a vector space and <Zf/, A >

a complete lattice-ordered vector space. If o : V- V:@ a

mapping for which

o(v+w) KX olv) + olw) for all v, we 7,

o(@v) = aq{v) forall aeReyve ",

. & & e .
and if {v.}); ;¢ 17 & (v.)i1 S 7/, ‘then there is a linear

- AT

mapping ¢ :Z-'V———a h// such that

(i) LA <I>(vi) for all i e I,
(ii)  o(v) R o(v) for all ve ¥,
if and only if
£ (4., i i} cI and (@ } < Re
for any {i;, i, ..o 1} €T and 17 Oy +ee @} Re

it j_.§ true that

n n
5 v, X oz vV, ) .
k=10k Kk k=1 K Tk

There are several known prooi’s of this theorem. We shall use
the argument of V. Ptak [31].
The necessity of the inequality is clear since ¢ is a linear

mapping.

G N L A S B SR N S S
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To show the sufficiency, suppose that the inequality holds.

g . +
FOI. given v e Z,,- 5 and [il, oo 0y ln] S I & [ a ) oo Oin] SRe

17 %

the following is true:

n n
s w, = 0 v+ so v, )+ o(-v) ;
k=1 £ i k=1 ¥ Iy ’

thus
n n
-p(-v) | ¢ (v+ = v, )- % w. .
k=1 x X k=1 %k Tk

)
Since <(,/, A > isa complete lattice~ordered vector space, we

can define AP (e by

n n
y(v) = inf (@ (vg £ o v, )- % v. } .
iel, k<n ko1 K4y K Tk

k

OkeRé

We can show very fast that V(av) = ay(v) for v e V&% ae Re,

In addition, if i € I, 0 ¢ RS, i<n, and €I, B ¢ Re, k <m,
and Vis Uy € 1 , then
n n nm m

o(v.+ T o w. )- Taw, +o(v.+ TB w,)- B w, >
A i 2 ka1 B od a1 B

& n m n m
Z ov, +v.+ To, w., + B, W, )- % W, - SB W,
12 ok i 1k g k=10{k e ka1 ¥k

Hence, \Lr(vl + v2) 2 \Lr(vl) + U_f(ve) for vy, v, € /";/d/.
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Using the assumption of the theorem, we can derive the existence of
¢ : '(’,d'—-a Zt/d/ with the required properties. Q.E.D.
The following corollary is a simple consequence of the previous

theorem:

COROLLARY 1  If <Z'/‘;’, ” ” > 1s a normed vector space and 5 :Z’d/-—-)Re

is a functional on ¥ , then there is a linear functional ¢ : [*—sRe

such that 5(v) < o(v) < [l for a11 v e ¥

if and only if

8(v.) < I = v |
k<m k k_<_mk
holds for all (v, } = Z‘V .
k'k <m~

This corollary can be used to find out what kind of condiiions should
be imposed on a wedge C) in ?/C/ in order to guarantee the existence
of a linear functional ¢ on 2/& s and positive on é .

For any wedge Coor I we set 5*= E-fv:ive & ) ;
that is to say, we remove from C those vectors whose negative

counterparts are also in & .

+
For § < [ we define (C[§] as the set

EL Em G, v, 2V, € S » @3 >0, i< m}, and call it a positive
linear closure of S . Ve set | Sl = inf\jS (vll3, if S c v
vV €

Now we are ready to state a theorem proved by Scott [12]:

THEOREM 2 (Representation Theorem) ILet (. < 717 ve a wedge of the

normed vector space < V, ” ” > o Then the necessary and sufficient
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condition for the existence of a linear functional o :2}/ —>Re

such that for all v € V :

(1) ov) < v ;
(i) ve £ == o(v) > 0;
(111) ve & = o(v)>0;

is the following:

0 . - g
j[ki]i___l[ k, is comvex &k, c [ &
<+ o0
e "= CIUK) & llx,+C || >0 sor
i=1
all i=1,2, ... |.

Proof:
I. Let o :Z/a/—yRe satisfy (i) - (iii). Then C+= {vet: p(v) > 0}.
If ve define k, = (ve& o(v) > 1/i} for i=1, 2, ...,

o0
then k. is convex and &t ¢V ki]' (i) & (ii) imply:
e}

vek, & wel = 1/i < o(v) +ow) < || v+w]|, thus

i < lx+ & |-

o0
II. et (k.]} be a sequence of convex sets in ?)V satisfying

i"i=1
the conclusion of the theorem. Iet us define 61 :V—-—-) Re

for i=1, 2, ... as follows:

Ik, + & I, if vek, ;
8. (v) = 0, if ve é;-ki;

-0, otherwise.
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If vkekﬁ. for k<m and weé s then

lx.+C < |1m+s v, +1/m-w]| , because
i - k
k<m
ki is convex. Clearly 81 satisfies the conclusion of Corollary 1.
Let us define linear functionals NS V -—>Re such that
Si(v) < cpi(v) < vl (vel?), according to Corollary 1, and put
© 9. (v)

o(v) = = - .
= 21

Then ¢ satisfies (i). (pi(v)_>_0 for v e € implies (ii).

By virtue of the definition, &;: (v) > Ilki +& || >0 for ve k.
o0

thus o(v) >0, for ve \J k; , so that (iii) also is true for Q.
]

Q. E. D.

COROLLARY 2 Let eg]j”gg a wedge of the normed vector space

< 17, | | > with countable basis B, that is, & = C'[B] U {0).

Then v el — ||[v+E >0 is the necessary and sufficient

condition for the existence of a linear functional ¢ : l’?f—eRe

satisfying (i) - (iii) of Theorem 2.

Proof: Put T=BNE* ; then &' = C*[U(V+Ci )],

veT
since if w= % v, e &7 , Wwhere v, € B and >0
k<m % Vx k ot
for k<m, then 3k Sm[vk e Y 1. Thus

0 0

%

+

W o= (v. + = —- v ), wvhich means that we C [v +& 1.
%o Ko gem %, - %o

Kk,
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If the basis B of the wedge & in Corollary 2 is finite, then

v+ € || >0« vE-E .

But it is always true that ve ' — v £-& . Thus in the
finite dimensional case, the functional ¢ always exists.

Theorem 2 has basic importance. We can translate binary relations
on Zﬁ/ into cones in Z;b'as explained earlier, and then show the
eXistence of a linear functional on.ly/ satisfying certain monotony
conditions.

As an important consequence, we shall prove, using Scott's

unpublished notes, the following theorem:

THEOREM 3 ILet <%, R > be a structure, where £ is a Boolean

algebra with zero element 9 and unit element 9 , and 2 is a

binary relation on A such that

p2 9, p 3 A and
A3 Bv B A forall 4 Belf .

Further, let

E(R) = (2 o8 -8):48 R Bi&aieRg&

& A, B, ell for i<m), uhere

A

A denotes a vector in the normed vector space of all continuous

functions on the Stone space Q. of EX with the usual supremum nornm.

S
Then for there to exist a probability measure P on 2%5 such that

A R B <= P(A) <P(B) for all A, Be &Z

30




it is necessary and sufficient that there exist relations -{; on

S—

{4, i=1,2, ..., such that, for all A, Be £ ,

(1) A ] B%A%iB for some i ,

() VpuWns<lyn s @ -8)+ ST,

kgm

B, 2 A for k<m and Ak,Bke%, k < m.

Proof:

I. Put A, B <= P(B) - P(A) > /i, i=1,2, ... .

1. EXR) = C"[U{E-%+(‘;(4):B=\<A}]. Thus,

if kn c v/ is the convex set, generated by the set
Upm-83+ & () : B A}, then the conclusion of Theorem 2

is verified, as is easily seen. Therefore we obtain a linear

functional ¢ :V——; Re such that o(v) <|[[vl]l for v e 7/“/ , and

A

A2 B = o) < o),

AAB => o¢(a) < o(B), if A, Be ff .

gt FSAE R ey N I N

Since () >0, @(A) >0 for Ace EX , we can put

A

;;; A ( b A A

’ p(a) = 228 | ang, in view of AR B & AR B, also
¢(@)

P(A) = P(A) . Q. E. D.

=~ Remarks:

(1) The technique of identifying elements of a family of sets with

vectors in a vector space zj/will be used over and over again. In

TN R R N T B e ol £ R W

et )

VR T
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. . { . . .
our case assigned one-one to the element A € ¢4 is the characteristic

function of the corresponding closed-and-open subset of the Stone
space QS of {? . This characteristic function, which is in the ’
vector space Z /(QS), generated by the set QS’ will be denoted

throughout the paper by E . (See the discussion of the Stone space
in 2.1.) In particular, if A, B e Z€ , then A+ 3B is the sum o

in Z,";/(QS) , and is equal to (AU B)" , provided AN B = g . .

Fal

It UC = (A:Acll), thenclearly L¥ 1 (0g)-

(2) We shall keep in mind the well-known fact that each finitely )
additive probability measure on Z/Z is the restriction to L2 of a T
unique linear functional @ : 1 (QS)——}RG with o(v) < |lvl for
v e 7//(98) and (@) = 1; and that the restriction of every such EE

functional is a measure.

(3) Theorems like
AR2B & BRIC =>A=RC; B
A2B & C2D —>AUC2BUD, if A|C, B| D fg;

are easy consequences of the rather complicated conditions (1) and (2)

of Theorem 3. 1k

COROLLARY 3 let < ZZ, 2L > be a structure, where &€ is a }

countable Boolean algebra with zero element $ and unit element @ ;

let =X be a binary relation on EX  such that P 4 &, f <L A,

and A2 Bv B= A forall A Bell .

*
)AJ_B means AN B=p .
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Then using the notation of Theorem 3, the necessary and sufficient

condition for the existence of a probability measure P on ZZ such that

——————

A= B <= P(A) < P(B) forall A, Be &

fa-B+E(RA)] >0, ir B} 4, (A, Be EE ) .
Proof follows from Corollary 2.

If the Boolean algebra 5& is finite, then the condition in

Corollary 3 boils down to a rather simple one, namely,

n A n A
\/ [Ai—.% Bi] —_ Bn-,i\ A, if T A Z B,
i<n i=1 i=1

where Ai’ Bi et for i<m.

COROLLARY L Let <0, ¢€, R > be a structure, where Q is a

AR LA LA ME ST R DRIt e Bt SALEE R ML 2 1 STl S A AL

: nonempty finite set; 4 is the Boolean algebra of subsets of 4
ﬁ and % is a binary relation on &K .

Then the necessary and sufficient conditions for the existence

of a probability measure P such that <q, & , P> is a finitely

additive probability space and

A= B<> P(A) < P(B) forall A, Be &l
are the following:

(i) R o,

(11) #3 4,

(iii) A2 Bwv B R A,

. & .
(iv) izen A3 Bl => B 2 A, if

O
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\J s, = U e U ann- UV B, N B, &...2&
i<n i<n i,j <n J 4,5, <n J
i< j i<

& Al n A2 n...n An = Bl N B2 n...n Bn R

N ¢
where A, B, A, B, e f for i=1,2, ...,n and \/ A,
i<n

10 Ay eees A

(For two sets A, and A,, A U A, is of course (Al N A2) U (Al n A2).)

denotes the symmetric difference of the n sets A

Proof:
First of all, the system of identities of symmetric differences

Py Py Py
A, = B. , where A
i i

of sets in (iv) is equivalent to )
n i<n

(R
IN ™M

denotes the characteristic function of the set A (Here the Stone

space of Z%Z is identified with Q.). Secondly, (iv) is equivalent to

AR B =3 |I§-X+&(-&)Il>o (A, Belt ).
For (a) assume (iv) and that

A 2 B, but that

+ (=) = 0. Then

L
'
= >

™ >
]
0 >
|

5 ak(Ak - Bk) for some m and for some
k<m

a >0, Bk.-%Ak, k<m.

3L




A A

Since the characteristic function A - B 1is integer-valued,
we may assume that the scalars ak are at least rational. By clearing
fractions, transposing, and allowing repetitions, we may even assume
that Otk =1 for all k <m. Hence
z Ak + B = z Bk + A .
m

k < k<m

But since \7’ Bka% Ak’ by (iv) we get B = A which contradicts A 3 B.
k<m

(b) Clearly (iv) follows from |[B-4+ & (L )] >0, if A 3 B.

Another easy consequence of Theorem 2 in finite case is the

following corollary:

COROLLARY 5 Let v/b_g a finite-dimensional real vector space

and let < M, 3 > be a finite binary relational structure, where

PpFMc ) and M is a set of vectors with rational ccordinates

with respect to some fixed basis of p.VThen there exists a linear

functional ¢ :2'0/——--)Re such that for all v, w e M

vR W= 9(v) < ow)

if and only if

(1) v<wwv w<v,

(2) \ 4 [v. 3 w,] = w. Q3 v., if % 5
) i i n n ) )
1 <n 1<n 1<n

rali P

where v, W, Vis WiGZ)V for i=1, 2, ¢0e n .
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As we have seen, the conditions to be imposed on the Boolean
algebra ZZ enriched by a binary relation e in order to get
a probability measure solving the problem (Pl) are rather simple
in the finite case. On the other hand, the infinite case is utterly
unintuitive. There may be some hope for simplifying the conditions
in the infinite case, too, but we shall not deal with this problem
here,

It is worth noting that Theorem 2 is general enough to be used
in proving various representation theorems, important in algebraic

measurement theory.

The structure < Q, £Y, R >, satisfying the conditions

(i) - (iv), in Corollary k4, will be called a finite qualitative

probability structure (FQP-structure). This notion can also be

defined in terms of a strict ordering relation -3 s 1in which
case, the axioms for <Q, €%, 3 > to be a FQP-structure, are

as follows:

(i) p3 9 ;

(ii) —m A3 ¢ ;

(iii) AR B = —B 3 A ;

(iv) 7 (A, Bl => B R A_,

vhere A, B, A,, B; ¢ C& for 1<i<n and

A, = s
i n 1 i‘S n

1AM
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If we put
A~B <> (—mA3B & — B34,
AB <> (A3 Bv A~B),

for all A, Be Z¥ , then the above definition becomes equivalent
to Scott's definition, spelled out in Corollary 4; simply because

A3 B<>» —B=a3 A. We shall freely use both definitions.

2.%. Additively Semiordered Qualitative Probability Structures

In Section 2.2 we discussed the general framework for the solution
of problem (Pl), and we pointed out that the method used was general
enough to be applied to other simiiar problems. The main task of
this section will be to give the solution to problem (Pe).

The notion of a semiorder comes up when a set 74 is being
ordered by some relation >- and, it is not always known whether

two elements from 44 are indifferent. More Precisely, a couple

. *
<&, > > is called a semiorder structure iff ) it satisfies

the following conditions for all A, B, C, D ¢ £F

(i) —m A >4
(ii) A>B&C > D => A>Dwv C > B ;

(iii) A> B & B> C == A>Dwv D &20C.

The concept of a semiorder is due to R. D. Luce [52], and the

axioms (i) - (iii) were given by Scott & Suppes [33].

*
) iff is short for if and only if
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If a semiorder structure < 22&, >~ > satisfies also
*
(iv) A > B => AUC > BUC, if A, B]| C, )

then we shall call it an additive semiorder structure.

In this section we shall deal with finite additive semiorder

structures < £,  >; the interpretation of the formula A > B

b

for A, Be C¥  will be: event A is definitely more probable than
event B,

(We prefer to use the symbol ™ instead of - because of
the possible confusion with the strict qualitative probability
relation discussed in the previous section.)

We assume the motivation for a semiorder relation > to be
known. Perhaps we should point out that semiorder is an adequate
notion for representing algebraic measurement problems, in which
the given measurement method has limited sensitivity, so that'locallz‘

the transitivity for > does not hold. In psychology one talks

about the so-called just noticeable difference (Jjnd), whose appropriate

numerical measure is a fixed positive real number E (which can

be normalized to 1 by choosing a suitable unit). Hence € is a
measure of the threshold of the measurement method.
For more sophisticated measurement problems we have to assume

that jnd is not constant, but varies from one measured entity to

another, For this purpose, Luce [32] introduced the notions of lower

and upper jnd measures € and £ which, in fact, define a jnd interval

*
) A]l Bmeans AN B=p . The other notation from set theory

and logic is standard.
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Py

about each possible result of measurement.

Bearing all this in mind, we turn now to problem (PE)' For

i s s oS,

methodological reasons we prefer to start with the following definition:

DEFINITION 1 A triple <Q, ¥, ™ > 1is said to be a finitely

vl

additive semiordered qualitative probability structure (FASQP-structure)

e W,

if and only if the following axioms are satisfied:

So 8 is a nonempty finite set; 7.4 is the Boolean

algebra of subsets of Q ; and b is a binary

relation on tkf 3
5, o -p;
S, —mA A
S, C>~B =>C %A, if AcB;

A"
Z 0 [Ai -~ Bi & -—-\Ci - Di] %[An} Bn%.Cn}—Dn] s

4 i
; where A, B, C, A;, B;, C;, D, el for 1<i<n; and
; > (A, +D,) = > (B, +C.) . (4 denotes the
* i i X i i
A i 5 n i<n

characteristic function of the set A.)

Remarks:
3 (a) As pointed out before, the formula in axiom Sh that concerns
characteristic functions can easily be translated into a system of

identi%ies among sets, oy means of the following fact:
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A, = Z B, for m<n, if and only if .
: . i . i -
3 i<n i<m _
: U Ai = u B. 3 B
i<n i<m ? :
3 - - . t
r: §
: =
: A A, = U s 3B ; Ok
1 i,j <n J i, <m J |
i< i< |
. .
. . U . Ai Ai oo o Ai = Bl B2 oo Bm 3 .
11,12,...,1m_<_n 1 2 m
' 11 < 12 < oo < lm
: : -
‘ O/ A, A, ...A. = f, if m<k<n, |
: 1,3, ,000,i, <1 1 T2 Tk - ~ §
4 12 tpreeea g S i
.
11<12<"'<1k
A, BielZ , 1<i<n, 1<j<m. Tl
Thus the FASQP-structure is given by axioms which contain as :
. §
4 primitives only the relation > and the algebra CE over & . . !
g |
(b) For the purposes of this section we shall define: ot
A~B &> (—A >B & —B > A4) ; -
A~B &= VC(AzC <= B=~C), where i
-
‘i: A, B, C € % . } } é
_ The relation =~ +(called the indifference relation) is reflexive
and symmetric, but not transitive. The relation ~ (called the ;
,
1 0 "




indistinguishability relation) is reflexive, symmetric, transitive,

and monotonic; that is (C~A & A >B) => C B .

Sometimes we shall need the set N(A) , called the neighborhocd

of the event A, which is simply the set {Be &% : B~ A} . Note
that for A, Be ZE, N(A) =N(B)«=>A~B. In CF we get

an induced weak ordering ¢>

A>™B <> A >B 3c[B, C e N(A) & C>B]v
3,08, D en(B) & a>D] .

We shall seldom use these last two notions, even though they
are very important in semiordered structures.

In the sequel we shall discuss also the quotient structure
< Qf~, CY~, >/~> obbreviated by <&, £, S= > ; in this

structure =/~ will be written as % .

(¢) There is no doubt that the axioms So - Sh are consistent and
independent. It is enough to put Q = {0, 1}, 2%5 = {A: A EEQ}’
and define >— in an obvious way. Then this triple becomes a model

for the axioms So - S

L

(@) The crucial axioms are S. and S,. Axioms S. and S. will

2 L 1 3

later impose the so-called normalization condition on the representing

measure, Sh in fact, will be used over.and over again; and we

need Sl to prevent the axioms from being satisfied by a trivial

structure.

P T AL AR TR R E N EDIARN S e  ATANN F DN e A SR RO TR
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(e) The definition of infinitely additive semiordered qualitative

probability sturctures, which can be represented by probability

measures on €A and by jnd-measures (see Theorem 6), does not
cause any fundamental difficulties., The axioms (particularly the
analogue of axiom Sh) are, however, extremely complicated, and
much less intuitive than those given above; this can be checked
by a glance at Theorem 3 and Corollary 3. The infinite case will
therefore be omitted here. As usual, in this case the topological
properties of » may be of considerable help in simplifying the
solution.

In the following theorem we examine the content of the above

definition.

THEOREM L4 Let <Q,& , & > be a FASQP-structure. Then

for all A, B, C, D ¢ £ the following formulas are satisfied:

(1) AB&C»D => (A>Dv C>B) ;

(2) A*B&C® A => (D>Bv C%D) ;

(3) A B&B&C =3 (A+=Dv D&C) ;

(4) A+-B <> AUDSBUD, if A, B| D;
(5) A>B &> B=A;

(6) AcB =» — A>B;

(7) —Pp>A&—A>Q;

(8) AB&B»>C =3 A>C ;

(9) ASp <= a0 >1];

L2




(10) —mA=p => AXp;

(11) —A=Q => Q> A;

\v4
(12) i< ntl [Ai> Bi] = Bn+l> An+l ?

and A, B, el , 1<i<nil;

(13) A>B&C>D => AUC>BUD, if A| C&B]| D;
(14) A>B&C>D => AUC>BUD, if A] C;

(15) A>B = —B»A;

(16) AUB>CUD = (A>C B»D), if C| D& ABX>p ;
(17) A~p&B~p => A~B;

(18) AcB&A>P == B >p;

(19) AcB&B=~p => A=xp;

(20) A=~B < K'—wg;

(21) A=Q &Ba~0 => A=x3B;

(22) A>B &> A-B>0, if BcA;

(23) A~B <> AUC~BUC, if A, B] C;

(24) A~B &= A~B:

(25) AcB&A>C => BX>C ;

(6) AcB&B~gp => A~p;

(27) AcB&A~Q => B~Q ;

(8) A~B<&> AUC~BUC, if A, B]| C;

(29) A~B&C~D =» AUC~BUD, if A| C&B] D;

(30) < O, £¥, » > is FASQP-structure ;

L3
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(31) A>BvB»>AvA=DB, and each of the formulas excludes

the other two;

(32) (A>B&B=C &C >D) == A >D;

(33) (A>B&B>C&B=x~D) =» (—MmA=Dv —C=D);
(34) A>B => — B¥A;

(35) A~B =3 —A>B&—B¥>A;

(36) A >B&ByC =3 ASC;

(37) < Zﬁt, - > 1is a weak ordering structure.

Proof’:

(1) (a) Suppose that A >B&C ~D& — A »>D . In 5 put

n=2 and A1 = A, Bl =B, A2 =C, B2 =D, Cl = A,
= = . i + + + = +
02 C, D2 B Then since Al A2 Dl D2 Bl B2

we have C & B .

(b) Suppose that A >B & C ~D& — C »B . As before, put

1 1 2 2
D2 =D. Then obviously we get again
Al + A2 + Dl + D2 = Bl + B2 + Cl + 02 .
Thus A»D.

A=A, B =B, A, =C, B =D, C, =C, D, =B, C

(2) (a) Assume that A >B&C&A& —D>B; put A =4,

Again the condition on characteristic functions is sestisfied.

using Sh ve get the conclusion.

Ly

=D .

Hence

2.
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(b) Proof is the same as in (e).
(3) Use the same technigue as in (2).
(4) Put A=A, D =BUD, B =B, C =AUD. Obviously,
Xl+51=%1+61’ since A,BJ_D.
Using S’-L we get the conclusion in both directions.
(5) Use 8, with n=1.
(6) AcB implies B=AUAB. Now
PUA>A UAB=B <« @ +~AB holds in view of (k).
Finally, since — § > A (as we can check from 83),' we get the
conclusion.

(7) If o »>A, thenby S p~0 , which is a contradiction.

3
For the second part use (5), and then the first part of the theorem (7).
(8) Follows from (3) by putting D= A .

(9) Use (5).

(10) The assumption implies that A>f@fwv § A . 1In view of (7)

wve get AM>P .

(11) Use (7) and the definition of =~ .

(12) In 8, put C,=D,=p for 1<i<nl, and D =4 .,

C =B . Clearly from the assumption we get

n n+l
y (A, +D,) = s (B, +0C.) .
i<n 1 1 i<n 1 -
\v4
Naturally we have also i o n(Ai > Bi & — Ci > Di) and An P Bn .

Thus, by S)_L we heve Bn+l> An+l .
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(13) Follows from (12).

L -
? T e
A e A g ————

e S AR AR

(14) Follows from 8, ; for

(BD)A+K+6+(BUD)A=§+B+(Auc)/\+;z\j, it AfC. ...

Now A>B, C&D, — 9 >BD by the assumption. Hence AUCSBUD. .

(15) A>B &> B>A by (15). Now if B >A were the case, then .
‘ by (13) we would have Q >Q , which is contrary to S, . Consequently, . 35
: —B>A. ~ i
(16) (e) Clearly (AB) + (AUB) +C+D = (CUD) +A+B+p, "l
S if ¢] D.

Assume AUB»CUD and AB ¢, and let — A % C . Then by 8),

we get immediately B > D .
(b) Proof is similar to the proof of (a).

- (17) et A~pP&B~p and —A~B. Then A¥»BvB%A,;
so, by S A9 or B>P , which is a contradiction.

(18) B

3 J

AU . Thus A > <A UAB=B%AB by (4). Finally,

gl

in view of S wve get B>P0 .

3 9
(19) et AcB&B=~fp and —mA=~pP . Thenby (10) A>pP and

‘ by (18) B> , which is a contradiction.

(20) Use the definition of =~ , and (5).

(21) Use (5) and (20).

(22) %+ (-ﬁA)A = Z\+5 , if Bc A . Use (12) twice.

(23) Use (5) twice.

(24) Use the definition of ~ , and (20) .

(25) AcB =—=>§_C_K, so C>A = C >B by 83. Thus B »>C .

L6
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(26) Assume that AcB&B~p, and ——mA~f@f. Then Ax~B&A=xpP
in view of (19) and (17). Since — A~ B, we have two cases:

() HC[CzA&C>B] .

From A c B it follows by S, that C »~A , which is impossible.

3
The case C~ A & B> C would lead to B> .
(b) 30[0 ~B&C>A].
Hence, C »P and also C~ @ , since B~ § . But this is a
contradiction. The case C~B & A>C 1leads to A% @ which is
also impossible.
(27) A~Q & A~p by (24). Use (26) and again (24).
(28) et A, B| C . Then
A~B &> A/~ =B/~ &> A/~ UC/~=B/~UC/~ &
AUC/~=BUC/~& AUC~BUC.
(29) A~B => A/~=B/~, C~D =3 C/~=D/~. Assuming
AJ_C&B_LD, we get A/~ U C/~ = B/~ U D/~ . Hence we have
also AUC~BUD.
(30) Use the fact that ~ is a congruence relation.

(31) - (37) are trivial consequences of the previous cases. Q. E. D.

Theorem 4 illuminates the intuitive content and the adequacy
of our definition. Before we proceed to the formal justification

of the definition by proving the so-called Representation Theorem,

we shall quote an easy consequence of Theorem 2, due to Scott [11]:

LEMMA 1 Iet V be a finite-dimensional real linear vector space

and let 0 #McNc ¥ , where N is finite and all its elements

have rational coordinates with respect to a given basis; further,

L7




let N= (~-v: velN} (i.e. N is symmetric).

Then there exists a linear functional o : "—>Re such that

P(v) > 0 4md v e M for all v e N
if and only if

(@) veM or -veM;

(B)

v, = 0& z (v. e M) -v. € M; vhere

v,vieN, 1<i<m.

3
£
2
¢

3

b

<

Fe

3

i

The proof is given in Scott [11] and for brevity will be omitted

here.

THEOREM 5 (Representation Theorem) let < Q ,Z&, > > be a

structure, where Q is a nonempty finite set, 14 2 is the Boolean

algebra of subsets of Q , and >~ is a binary relation on b A

Then <@ , Z€, ™ > 1is a FASQP-structure if and only if there

exists a finitely additive probability measure P and a real number &

such that <@ , C€ , P> is a probability space end for all A , B cCk:

A>B 4> P(A) > P(B)+E , where 0< & <1

A~B =>» P(A) = P(B) .

The theorem remains valid if the representation is given in

E__he form

A»B < P(A) > P(B)+& , where 0< & <1

A~B =3 P(A) = P(B) .
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If & =0, then the FASQP-structure reduces to a FAQP-structure

(finitely additive qualitative probability structure), such as discussed

in Section 2.2.

Proof:

I. The existence of a probability measure P on “f and a real
number € .
Suppose that < Q , &%, & > is a FASQP-structure. Then in

view of Theorem 4(30) <& , €&, & > is also a FASQP-structure.

. . *
Let us define Q_ =@ Ufe .}, where e Q | =m, )

m+1 m+1 £e, |

R
} . Then any element A of {€ )

~

e
Q = [el, €.y eoey em] , E-=

2’ {em+l

can be uniaquely represented by its characteristic function A which

we shall consider now es a vector

in the mt+l-dimensional real linear vector space l}>150) , generated

4R R AR LR VAR R A SR Y et

by vectors ([ei]) , 1<i<mtl . It should be clear what is

" ~

meant by A+ B and o - A in 29160) , if a is a real number

.
and A, B¢ et . (For the time being we use the same variables as

(FRY it e PORELIS A e AR A,

we used for the elements of ¥ ; this is for simplicity of notation.)

EXAA bR

The reader should consult Remarks (1) given after Theorem % in Section 2.2.

: *
& ) |A| denotes the cardinality of the set A.

4 *%
[ ) Varaiables A, B, C, D, ... are now running over the

algebra Zf .

SRR U ey e TR
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Iet us put

N = (A-B=-E:A Bet% }) U (B-A+E: A Be &t ) and

A A

M = {(A-B-E: A Belt g aAy"B}) U(B-A+E: A Bell & —ASB}.

Then surely P # McNC 'Z/y(Q'O) ; N is finite and symmetric, and
contains only rational vectors with respect to the basis

~ mtl .5
{({ei}) }i—l . TFor, e, €M byS, L€ is finite, and

furthermore, v e N <= -v e N for any v € ?}/(do).

If veN, then veM or -veM, since A¥B or
— A ¥B, where A,Beb‘.& and v=A-B-E or v=B-A+E.
Therefore the condition (@) in Lemma 1 is satisfied.

Now the condition i\zp[vi e M] in (B), Lemma 1, is equivalent

to the condition

v.=A, - B, -E&A, ¥ B, (2.1)
1 1 1 1 1
or v, =B, - A +E & A B ; (2.2)

that is to say, some of the vi’s have the form (2.1) and the rest
n-1

Lo

have the form (2.2)., If we relabel the sequence {vi} so that
i=1

the first k elements (k < p) have the form (2.1) and the
remainder the form (2.2), then we get an alternative version

of (2.1) and (2.2):

v,=A -B -E&A ¥ B, 1<igck
A A A . (2'5)
or vi=Bi—Ai+E&——.Ai>—Bi, k+1 < i <p-1,
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vhere k 1is some natural number 0<k<p-l.

The condition by v, = O is equivalent to
i<p
k/\ A A P"'lA A A
S (A, -B, -E)+ £ (B, -A +E)+v._ =0,
i=1 i=k+4l P
that is,
v+ (p -2k + 1)°E + s (A, -B,) +
P 1<i<k * 1
b (Bi -Ai) = 0. (2.4)

k+1 < i < p-1

Since YP € N we get two cases:

A) v.=A -B -E;
P P P

A

Since E cannot be written as a linear canbination of the

. AT
elements of (/7(Q) (which are generated by vectors {({ei}) }i=l

A

actually belonging to {A: Aeff }), E cannot occur in (2.4)

the same number of times negated and unnegated., Therefore

A

(p-2k-1)'E-E=0, that is p =2k + 2 . Thus the equation

(2.4) can be rewritten as follows:

A k A p"'l A A k A P-l A
A+ SA.+ £ B, = B + £SB. + 5 A. . (2.5)
Pyt e Pooga1 g1
Using the substitution
* *
A. =A. , B, = B, for 1<i<k,
i i i i - 7 -
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*
b1 = Ap ? Bk+1 B Bp ’

;=B » D

]
=

+ = - .- i
s 5 4k for k+1l=p-k-1>i>1,

we got from {?.5) the following formula:
k+1

(e, +A%) = g (D, +BY) . (2.6)
fed =1 * 1

The conditions

A, ¥ B, (1<i<k) and — A; ¥ B, (k+l < i< p-1)

in (2.3) are now equivalent to the following condition:

\vd * o ¥ o
[Ai>.Bi &,-ﬁDi}Ci] & Dk

i < k+1 +1 >~ Ck+l *

Finally, Lemma 1 gives us -vp € M, that is, Bp - Ap +EeM,

which is equivalent to A]t+l > B}t+l .

B =B -A +E:
) V=B - A

For similar reasons as before, p = 2k and then (2.4) becomes

k A P k ~ p N
LA+ = B, = IB + = Ai. (2.7)
i=1 j=k+1 1 i=1 T i=k+l

Now if we put

*x *x

A=A, , B.,=B, for 1<i<k and

1 1 1 1 - -

C; =Biyx» Dy =4y, for 1<i<k=p-k, then (2.7) becomes
= (A, +C,) = = (B.+D.). (2.8)
. 1 1 . 1 1
i=1 i=1
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:

The conditions

A,#B, (1<i<k) and — A > B, (k1 <i<p-l)

in (2.3) are equivalent to the condition

i
Iermma 1 gives

equivalent to

Finally,

we get for p

<k

\Vf * . ¥ . * ¥
[Ai'r-Bi& ——;D:.L)-Ci] & Ak>—Bk.

us =-v. €M, that is, A - B - E e M, which is
Y Y Y
Dk'?- C,
joining the cases A) and B) and changing the notation,
k+1 A k+1 A
=2k + 2, 5 (A + C ) = T (B + D ) moreover,
i=1 i=1

V [A >~B & —-:D >~C ] implies [ k+l>_ Ck+l=§Ak+l$'Bk+l] .

i < k+l

Similarly, for p =

k
(A+
1—1

and s k[Ai>-Bi & = Di>-ci]

that is, for

2k we obtain

k
C ) = (B + D )
1—1

- 0 I" [ 4
implies [.1k P Bk =>Dk - Ck] ’

n = p/2

v[A}-B &C,»D.] & A ¥ B =>C D , if

i<n

The above reduction of axioms S

, and S, to the conditions (@)

and (B) in Iemma 1 allows us to use the conclusion of Lemma 1. That

is to say, ©S

2

for the existence of a linear functional o :

and Sh are the necessary and sufficient conditions

U/(Sfo) —>Re such
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that o(v) > 0 <&>v eM for all veN.

N N

Since E e M (axiom 82), we have @(E) > Q , and since

-ﬁ £ M, it follows that cp(-ﬁ) = -cp(ﬁ) < 0 ; hence cp(ﬁ) >0 .
It A, Bez'“/:ﬁ , then

A>=B<=»K - % - ﬁ € M@cp(f\.) > cp(§) + cp(ﬁ) .

Consequently, Sl gives us cp(a) > cp(;?S) + cp(ﬁ) > 0, so that

we can put

cpo(f\) 1]
o)

In order to simplify the notation, we translate the result from
the vector space 19/(50) into the Boolean algebra 5.5 (c.f.
Section 1.4 and Remark (1), given after Theorem 3, in Section 2.2)
by putting v(A) = cpo(:l\\.) . We also define the jnd-measure &

to be Y(E) .

In view of S, we have 0< & <1 . Obyiously

1
(i) 1l’(é) = 1,
(i1) A| B => (AU B) = vy(A) + ¥(B) .

Clearly for A _l_ B we have (A U B) = cpo((A UB) ) =
Po(A + B) = @y(A) + @ (B) = v(A) + ¥(B) .
After translating into the new notation we get also

(iii) A 5B & u(A) > ¥(B) + £ .

5k

-

L R

}

:v—;‘w}
N ——p
5 he s Y g iy 2
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o .
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3
E;
¢
L
;
3
5
:
e
A
3
:
;
3
¢
=
y
;

Now we shall prove that V(A) > 0 for A e & . Assume
that V(A) < O for some A e CF . Obviously A=f@ (A5 P would
give ¥(A) > & , and P> A is impossible in view of Theorem 4(7)),

and A # P . Therefore we get two cases:
a) BXA&BM P for some Be £& . Hence y(B) > & , so that

¥(B) - v(a) > & vhich means B & A . But this is a contradiction.

Case B~ A& >B contradicts Theorem 4(7)).

b) BSXP&A¥B forsome Be & . Thus, in view of 83 we
have A»p , which is impossible, The case B2 f & B A would

contradict the consequent of S Hence the assumption V¥(A4) <O

3 L
leads in all cases to a contradiction. Consequently, we have for

[ 4

Ae L :
(iv)  w(4a) > o,

; *
Finally, if we put P(A) = y(4/~) , where now A e oA s )
then P 1is a real valued function on 5{ and the conditions
(i) - (iv) are satisfied if we replace by P and the algebra Z£

by L . Moreover,
(v) A~B => P(4) =P(B) , if A, Be ££ .

Thus on the basis of (i) - (v), <@ ,Z£ , P > is a probability
space, and P 1is the desired finitely additive probability measure

of Theorem 5.

IT1., The probability measure P on &t and the existence of a

real number & (0 < E < 1) imply the axioms Sl - S,_L .

*)

Variables A, B, C, D, ... are now running over % again.
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Iet <Q , L , P> be a probability space such that );

A>B<»P(A)>P(B)+E& , where 0< & <1, and

A~B =»P(A) =P(B) , forall A, Be ZC .

One can easily check that: '}E
1 = P@) >& implies S, ;
— P(a) > P(a) + & implies 82 ; {3?

g <l
Sl L

AcB =>P(A) < P(B) and P(C) > P(B) +& > P(A) +¢&

o

together imply S5 s and finally, if we put QO(([ei})A) for

o —— ]
SR g Ll

e

1<i<m, we get the linear functional from Lemma 1.

The condition ]

s (A +D) = = (B +C)
i<n i<n e
then implies 'i{
. ;i
£ [y(a) +¥(D)] = = [W(B;) +v(c,)] (2.9) ;
. . o
i<n i<n :

TR

and thus the condition

-
| Yaameceld
TP e

Avd [A,>B, & — C, >™D.] & A > B
1 1 1 1 n n

i<n

gives us

z P(A,))> = P(B,))+ (n-1) & ;
i<n i<n .

[ }
9 vy I

6

G, leia




e

» P(C.) > £ P(D,)+ (n-1) <&
i<n * i<n *

and

P(A) > P(B)+E .

Adding together these inequalities and subtracting equality (2.9)

from the result, we get

P(Cn) > P(Dn) +&

vhich implies C_ > D .

Thus the proof of the Representation Theorem is complete.,

A question arises of what group or set T of transformations
the probability measure in Theorem 5 is unique up to; or in other
words, 'how many' different probability measures can we have, once
a binary relation >‘ in a FASQP-structure is given. We might expect
some periodic functions with period € to be the elements of the
unknown set T . The complete answer does not seem to be simple,
and we therefore leave it as an open prcblem. Some further dis-
cussion of this subject will be given in Chapten 5.

Ve pointed out that the intransitivity of tﬁe relation =
reflects the inability of a measurement method (or apparatus) to
distinguish or recognize two different magnitudes of the measured

quantity, when their difference is below the sensitivity of the
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method. More refined measurement methods are needed to make these
magnitudes‘ distinguishable. This amounts to considering a lattice

of relations {=.]}. where =, is finer than =, iff
i‘iel i — J
A~ B => A=~ B forall A, Be & (i, j eI) . The set

[zi}iel then characterizes the class of measurement methods from

the point of view of sensitivity.
In psychology there are problems in which =~ 1is not constant,

but varies with the entity on which the measurement is performed.

Tn particular, if Ae &£ , then £(A) and E(A) characterize

the change in probability necessary for indifference = to become

preference > .

If we put for A e &L

€(8) Max {P(B) - P(A) : AxB&Belt };

(2.10)

£(8) Max {P(A) - P(B) : A~B&Belf 1},

then
(1) o < E(n), £(@) < 1;
(11) A~B ==P(B) - &(B) <P(A) <P(B) + E&(B) ;
(iii) A > B &> P(8) > P(B) + £E(B) ;
(iv) P(a) < P(B) + E(B) +=>P(a) <P(B) + £(a) ;
(v) P(a) <P(B) => [P(A)+ E(A) <P(B)+ E(B)V
P(a) + £(B) <P(B) + £(A)] ;

(vi) AcB => &(1) < E(B) .
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This is easily checked. Consequently, Theorem 5 can be proven also

for the varisble jnd's &(A), £(A) , given in (2.10). It

is an open problem how to give a representation of < Q, ¢, - >

interms of P, & , & , without assuming the condition (2.10)

a priori.

2,4, Quadratic Qualitative Probability Structures

In [34] Iuce and Tukey gave a formal presentation of what

they called conjdint measurement structures. Such structures are

linear. Here, by constrast, nonlinear (quadratic) measurement

AT RTINS A TR I WR S N T NI T e )

§ structures will be introduced for probability. More concretely,
given a finite Boolean algebra CC of subsets of @ and a binary
relation 3 *) on the set of Cartesian products of elements
from ¥ , we shall give the necessary and sufficient conditions
for the existence of a probability measure P on &t such that

for all A, B, C, De &&
AXxB=a CxD <= P(a) - P(B) < P(C) * P(D) .

As will be seen later, the appearance of Cartesian products
AxB, CxD here is not essential; we could as well consider

the ordered couples <A, B>, <C, D> . Structures of this

*
) For typographical simplicity, we use the same symbol that
was used in Section 2.2 for a different ordering.
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sort differ from ILuce's canjoint measurement structures in three

respects: they are finite, the representing function has a special

property, namely, it is additive, and finally, the representation
is quadratic and not linear. Since most of the laws of classical
physics can be represented (using the so-called s-theorem) by
equations between a given (additive) empirical quantity and the
product of other (additive) empirical quantities (possibly with
rational exponents), such a structure is of basic importance in
algebraic measurement theory.

For instance, for Ohm's law we might hope to give, for the

system of current sources {Mi)i <n and resistors {ri)i cm’

a represeniation theorem in the form:

<e,r.>3 <c,r,> <« I *R < I, *R, P
i’ 71 3’ 73 i i - 73 J

where on the right we have well-known physical quantities, namely,
current and resistance (i <n, j<m).

This is a digression. Returning to quadratic probability
structures, the reader may wonder in what way the formula
AXxB 3 CxD (A B, C, DeZ& ) in (2.12) can be interpreted.

There are several partial interpretations which will be dis-

cussed in the sequel:

(a) Qualitative probabilistic independence relation ﬂ :

Al B = a8Bx0~Ax3B,

60
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where, as usual, A, B ¢« 124 and ~ 1is the standard equivalence

relation induced by 2,

(b) Qualitative conditional probability relation =

A/B= C/D<> ABxD 2 CDxB, if px9 3 BxXD,

where A, B, C, D ¢ 4 and = is the strict counterpart

of |® . 'The entities A/B, C/D can be considered here as

primitive.

(¢) Relevance (positive and negative dependence) relations C s C

AC+B<=>A><B—BABxQ;
AC B<=3>ABX0 3 AXB,

where A, B ¢ @t . These notions may be of some help in analyzing

causality problems. It is immediately obvious that A C_ B&» A0 3 A/B

and A C_ B &>A/B 3 Ao .

(d) Qualitative conditional independence relation | :

A/Cc || B/ces>ATxBC~ABCXC, if p3 C,

where A, B, C e ST

Since, as can be seen, there are several important interpretations
of the fornula AX B ® C x D, we shall study the structure of

the 'quadratic' relation = in considerable detail.
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DEFINITION 2 A triple <Q , &€ , = > is said tobe a

finitely additive quadratic qualitative probability structure

(FAQQP-structure) if and only if the following conditions are

satisfied:

QO Q is a nonempty finite set; EZ  is the Boolean algebra

of subsets of Q ; and =2 is a binary relation on

(AxB:Acktl& &«Belt 1.
Q pxo=2 Qxa;
Q pxA= BxC;
Q. AXB<= BXxA;

Q AXB3CxDv CxD3 AXB;

O
e
K<l

n(AixBi% A xBﬁ-)_bAG: xBB = Aann;

> Oﬁ i n n

Q 1<n(CixDi-%EixFi)=—>Eann% C, xD ;

where i<n(¢x9—3 AixBi); R (C.xDi) = (E.xFi)
i<n i<n

A, B, C, D, A, By, C;, D5 B, Fie% (i<n); a B are

permutations on {1, 2, ..., n} , and (¢ x D) denotes the

characteristic function 9? @E@ ggy CxD.

Remarks:

(i) We define

A2B &> AxQ2 2 BXQ;

AXB2 CxDE=—CxD=a AXB;
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AXB~CxD&AxB=CxD & CxD = AxB;

(A x B) (“ﬁ; ab) = 1, if @ €A & @, € B ;
otherwise (A x B) (“ﬁ} wb) = 0 (“ﬁ; w, € Q) .

(ii) The formula concerning characteristic functions in axiom G
can easily be translated into a system of identities among sets;
a similar transformation was made in the case of the qualitative
pProbability axioms listed in Section 2.2. Thus the axioms for =
contain as primitivesngglz the relation = and the algebra £ .

The content of the above definition is laig bare in the following

easily proved theorem.

THEOREM 6 let <0, 2, R > ve a FAQP-structure. Then

the following formulas are valid for all A, B, C, D, E, F ¢ /4 :

(1) AxB~AxB;

(2) AxB~Bxa,;

(3) AXB‘-%CXD&CXD-%ExFay.AxB—,J.ExF;

(%) AXCIBXCe&AXDIBxD, ir fxeacCxD;

(5) AxB—J\CxD&ExC:&FxB%AxE—%FxD, if fxQ3BxC;
(6) AxB«%CxD,@BxA-%DxC;

(7) QxA%BxQ&CxQAprgAxchXD;

(8) AxQ%BxQ@AxA:‘anB;

(9) AXB~CxD=>(A2CeDRB) ;

et SITTAR T A
& F SRS -

4 (10) (AanlFxF&AxE4DxD&ExE=&DxF)->-AxE~%DxF;

(11) A= B&>AXxBRAx B ;
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(12) P34 P3B=>0x034x%xB;

(13) J:?g/n(AiXBi%CiXDi) & V(C.xD.

-——--wxa><13f3=é,c7 X Dy, if 1.~\V</n(jl5><ngc7 x Ds ) »

n n n n i i

where A

12 By Gy DieZ?Z (i<n), and @, B, 7, 8 are

permutations on {1, 2, ..., n} ;

(14) If A X B&>AXx0 2 BxQ, then <0 ,&f, <>

is a FQP-structure.
Theorem 6 will be useful in several ways. In particular, the
properties of || will be derived from it.
Before we proceed to the representation theorem for FAQQP-
structures, we must give a brief review of %ensor products of

ordered vector spaces.

13 74— .
The tensor product of two vector spaces ‘1 and /- s 1s,
roughly speaking, the set of formal sums
A 2
» / V »
. i nai(vi @wi) » where o, € Re, v, € Z/l ) W, € 2}2/

for i_<_n:

this is made into a vector space by considering the following

formulas to be valid for all v, vy, v, € Z“I s Wy Wy, W, € 2/5;/

and <& € Re :

(vl+v2)®w=vl®w+v2®w;

6k




v @ (wl+w2) = v @ w tV ® v, ;

alvew = (v) @ w=1v@ (mw).
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If ZQ/ and 'ye/ are equipped with cones 61 , 52

1
ZQ/ and 7}1/, we shall

respectively, inducing orderings in 1 5

call the couple < ?)i/ ® 2}2/, C > a tensor product of the

ordered vector spaces < '&Qf, Z‘il> and < 7)2/, 52 > :

E=-1( = Cti(viQWi):vie ﬁl&wie Ee&aieRe

i<n

iff
for 1< n} . ;

The tensor product of ordered vector spaces is again an ordered
vector space; and, in particular, if < Z}I , ‘£l> , < /Z/Oé/, 42 >

are the given ordered vector spaces and < /Z/al/ ® /Z/aé , R > ;

is their ‘ordered' tensor product, then

(i) 0=, v &O%gw—bOf-Q\VQW;

S e g

(ii) v, ® W = Q@ v, = (vl —3;1 V&V, —_&2 wl) 5

we V.

where v, Vs V, € ] 10 Wy Wy, W 5

The well-known natural isomorphism between the space of

bilinear functionals on 2); X ?92/ and the space of linear

functionals on ?/Q-l/ ® '2/’2/, B( /Z}i, 7/0'2/) = ( 2};® ?}2/) s

turns here into an isomorphism between the space of order-preserving :

bilinear functionals and the space of order-preserving linear

r\ functionals.
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For finite dimensional ordered vector spaces < ’Z/I P &:1 >,

1§~ ' - g Y oqim T . qim 7 L s
< ¥, &>, am (K@ V) = am 5/1 am 75 it

” g
< ?,ﬁ@ ’,}2 P é‘/ > 1is the 'ordered' tensor product of 4’1

then

and }2/ P

C= { = A eréale VgEC': f(Vi)‘g(Wi) > 0},

b
i<n i<n
where t: denotes the dual cone in 29’ : and 2));: is the dual

vector space of 29'; for i=1, 2,

THEOREM 7 (Representation Theorem) Iet <@ , ¥, & > bea

structure, where @ 1s a nonempty finite set; % is the Boolean

algebra of subsets of Q , and 3 is a binary relaticn on

(AxB:Acl¥ «Bel ).

Then <Q , € , R > is a FAQQP-structure if and only

if there exists a finitely additive probability measure P such

that <@ , C£ , P> is a probability space, and for all

A, B, C,De ¥,
AxB=3CxD<>»P(A) * P(B) <P(C) * P(D) .

Proof':
I. Sufficiency

(a) Translation of the problem from the language of relations

into geometric language.
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We shall first represent the Boolean elements A € /A by

A A

vectors A = < A(a)l), A(wa), ceey A(a)n) >, where §Q = {a)l, Wys o) a)n] ,

| @ =n, and A(@) =1, if we A, A(w) =0 otherwise.

Defining A+ B, o * A in an obvious way, we generate a vector
space o) =Da/ , Where {3. : Ae }_C_Za/ and dimV/= n .
Defining 11:% %@A"" B, we can generate a cone E i V¥
by using the set {;5 - 2. : AR Bg&A, Be £ )} ; this furnishes Z/a/
with an ordering structure, corresponding in a one-one way to the
ordering in % .

The Cartesian product A X B will be represented by the
tensor product X@% in ¥ ® ¥ .

Putting A@ BR2CQD&>A x B3C x D, we get an ordering

on /)f ® V. ‘his completes the translation.

(b) Translation of the problem from geometric language into
functional language.

Translating Qu and Q6 into geometric language of tensors
and using Corollary 5, we have the necessary and sufficient con-

ditions for the existence of a linear functional V : % @V —> Re

such that

A@BRC@D<V(A@E) < ¥C@OD),

for all A, B, C, De ¥ .

{ ’ In view of the isomorphism of the space of positive linear
{ functionals on ?)’@V : ﬁ( Z”@D‘/) = J3 ( @a/, ?)/) ,
7 ’,1 "y

we can pick up a bilinear functional @ : 7/9'/x 7)"——-; Re ,
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corresponding to ¥ and put

A@BRC®D<> 9(4, B) <o(C, D)

for all A, B, C, D e &€& .
Now Q, compels @ to be non-negative: cp(A, B) > ¢(¢, C) =0

on (A®B: A, Be 7 A } Ql allows us to normalize ¢ :

0@, Q) > 0 ; and Q5 forces @ to be symmetric: o(A, B) = o(8, 3) .

The last step remains, but it is an important one. It is to
show that ¢ can be split into a product of two linear functionals:
o(3, B) = £(R) » g(B) . Tt is an elementary fact from linear
algebra that this can be done if and only if the rank of ¢ is
equal to one. As ’Z*'l'(Q) ® Z}(Q) = Z/Q(Q x Q) , this can be
expressed also in terms of the matrix of ¢ . Because of the
symmetry of o , f must be equal to g . Axiom Q5’ translated
into geometric language, determines the values of cp(.’l\\., %) on a
system of curves which nowhere intersect each other, as one can
check from Theorem 6(4,5), and from countably many similar con-
sequences of QS. Since @ is symmetric and linear with respect
to each of the arguments, the curves must form a system of symmetric
hyperbolas (cf. Aczél, Pickert, and Radd [35]). 1In fact, since
Ve (1@ ™ )* 2 Fxg ¥, ¥v= % fi®gi , where

iSn

f.5 8 € 1%*% for i<n, Thus ¥ (A® B) = fi(A)'gi(B) .

z
iSn
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In view of the above ar ent f.=q., .-f, .= B. .°g.
gun ) i 1,5 73 3 gl 61,3 gJ 3

where @, ., PB. . €Re for i,j <n; and the normalization
i,J 1,d =

AL F Ol b g AR CYNCR Y A L LY e At O TR e o

of ¢ dimplies f=fi=fj; g=gi=g‘j for i,j<n; and

thanks to symmetry, we further get f = g as stated above.

Hence we get for all A, B, C, D € ”

A@BC @D e>rl) « £(B) <£(C) * £(D) .
(¢c) Translation of the problem from functional language back
to the language of relations.
We switch from A e 4% and £ : U ——3Re to A e £F
and P : &€ —>Re by translating tensors 1/-‘:®B into Cartesian

products A x B and putting

P(a) = £(A) for all Aell .
£(2)

Then clearly < Q , Z{ , P> 1s a probability space and

(2.12) is satisfied.

IT. Necessity.

It is a routine matter to show that the axioms QO - Q6 in
definition 2 are necessary. Q. E. D.

It should perhaps be pointed out that FAQQP-structures
exemplify an important class of fintie quadratic measurement struc-

tures not previously discussed in the literature.
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2.5. Probabilistically Independent Events

% As is well-known, probabilistically independent events play

an essential role in the definitions of information and entropy.

The independence relation between events is defined éntirely in

terms of the probability measure P : P(AB) = P(4) » P(B) . One
wonders whether it is possible to give a definition of a corresponding

binary relation ﬂ. on et in terms of the qualitative probability

relation '% on Zﬁf . It is trivial to see that this is not
possible in terms of FQP-structures, but, as has been pointed out,

7 such a relation can be defined in terms of FAQQP-structures by

putting
Al B> B xQ~AXxB for all A, Belt . (2.13)
This definition not only is important for qualitative informa-

tion and entropy structures, but also can be relevant in applied

probability theory, where one does not care too much about the

underlying probability structure <@ , Zﬁt, P>, but emphasizes

rather the analytic properties of random variables. Under these
circumstances the independent random variables could be handled
using the basic properties of u_, without explicit reference

to the probability measure P +that satisfies the condition

A | B<«>P(AB) = P(A) * P(B) .

In this section we state a theorem about the basic properties

of ﬂ .

SR AR A SV R SO S i I o
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THEOREM 8 If <9, &% , 3 > is a FAQRP-structure, then

given (2,13) the following formulas are valid when all variables

run over €€

(1) pla,;

(2) o] a,;

(3) Al ae=>(a~avan~g) ;

() Al Aa=A]B;

(5) A]B&A|B=(A~pvB~p),

6) A|lB&AcCB=>(A~pVvB~Q);

(7) A|| B& A ~B=pAB~AB ;

(8) Al B& B A,

(9) Al Be>a] B;

(10) A] Be>A ] B ;

(11) A B=»AB3 B, if A0 & P3B;

(12) A B=>»(f=32&pf3B=>p3AB) ;

(13) Al B&B|| c=>(aB] ce>a| BC) ;

(14) A B&C| D=>(A=C&B=D=>AB=3 (D) ;
(15) AllBs&al]lc=a]BUC, if B] C;

(16) A B&a]c=>a]BnC, if BUC=Q ;
(17) A]lB&A|c=>(BRCe=2A4UB=RAyYC), if AIQ
(18) Al B&A|| c=>(aBR ACe=>B=C), if f44,

(199 A~C&AB~CB==(A] Be>cC| B) ;

(20) Ve n(AiBi = Aa.BB.)=> A, BB < AB , if
1 1 nn
L‘ iSn(Ail[Bi&Aail[Bai&o—%AiBi), and o, B are

0 n




The proof is a routine application of Theorem 6. We shall use
this theorem throughout Chapter 3. It is rather disappointing
that the qualitative independence relation ﬂ_, which plays a
central role in probability theory, has such complicated properties.
It was Marczewski [36] who argued that probabilistic independence
has a different nature from the notions of algebraic, logical, and
set-theoretic independence. The fact that this is not precisely
true was demonstrated by Maeda [37].
The independence relation | can be extended to any (finite)
family of events {A;). . < J& with more than two elements in

such a way that the following equivalence is preserved:

) |l e Y A [P(/\A)—TTP(A)]

iel 0 1eI

It is sufficient to put

(i) (A, B} | = A B;

(ii) (A, }'J‘Lﬁﬂ;éI CI[{A Lﬂ_ &AA .”./\

ieTl 1eI 1eI iel-T 0

It can be shown easily that

(1) {A]_“_==>A _”_ Ay s

iel i, jel
it
(2) (A, }i_yf-» (5,] " 1€I[Bi =4 v B =L];

12
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We shall not need these rather general properties; further

details about II are therefore omitted.
iel

Perhaps we should point out that the I-place relation Il
iel

enables us to treat probabilistic independence in lattice-theoretic
terms. In particular, the lattice-theoretic notion of independence
coincides under certain reasonable conditions with the probabilistic
relation u o As mentioned before, this is contrary to what

Marczewski [3¢] maintains.

2.6. Qualitative Conditional Probability Structures

The first part of this section is devoted to the study of
some simple algebraic features of the relational structure < £25,=% >,
where for A, B, C, De U , A/B=RC/D is interpreted probabilis-
tically as follows: event A given event B is not more probable than

event C given event D, As stated in Section 2.1, the conditicnal

event A/B is defined set-theoretically as an element of the

e ]

quotient Boolean algebra w/B = ?’/Z/ V(B) , where /(B)

is the filter generated by the nonempty event B,
We shall be concerned with problem (PB) of Section 1.1, the

basic interplay between the qualitative conditional probability

5




structure <9 , &%, ! > and the probability space <@ , L, P>,

In particular, a representation theorem is proved.

DEFINITION 3 A triple <Q , s, A s = > is a finite qualitative

conditional probability structure (FQCP-structure) if and only if

the following axioms are satisfied Eo_r all variables running over

A, provided that in the formula A/B=3C/D the events B and D
are elements of & = (a: A el & p/a’d a0} :

‘I'O Q 1is a nonempty finite sit 5 CE  is the Boolean algebra

of subsets of © , and =< is a quaternary relation on V44

T. p/e3 e/ ;

1
T, p/A = B/C ;

T, A/B3 AB/B ;

T, A/BR C/Dv C¢/D=R A/B ;

%5 O\Skfgn[A’/ N 4,38 / /N Bl

0<i<k kO<1<Bk

==>/\A/A—% /\B/B

O<1<n O<1<n1

for all permutations B on {1, 2, veey, n} ; moreover, if in

the antecedent —3 holds for same Kk, then -3 holds in

the consequent;

s Y< n[Ai/Bi’% Ci/Di] ??/Cn/Dn% An/Bn > i

™




Remarks:
(i) A/B3C/D of course means — C/D=A/B, and

A/B ~ C/D means A/B RC/D & C/D = A/B .

E/B denotes a vector in the quotient vector space 1L25.; for
details of Q)%; we refer the reader to Theorem 10, In fact,
K/B can be identified with the partial characteristic function
of A : [K/B](w) =1, if we AB, [E/B](w) =0, if we AB,
% and is undefined elsewhere. Thus axiom T6 can be stated purely in

terms of elements of qu and the relation =% . Note that

the set CF— 9!(') is an ideal.

(ii) As one can see immediately, the crucial axioms are T_ and TB,

p)

corresponding to multiplication and addition laws of probability

respectively. If we admit that A/B ¢ /B, then T, is trivislly

satisfied and = is a binary relation on the set of conditional

events {A/B: AeZ & B¢ ZQZO} .

i Ssstunce LR cxuciqun IR secicns Kiid vosson St
—, s

(iii) We are using the same symbols in several different senses
in the present work. In particular, <Q , ZZZ, = > has several
3 different meanings in different contexts. This leads to typographical

simplicity. There is, of course, always the possibility of designing

- -

A yereses EEERAG)

~

some more ingenious symbolism.

(iv) The definition of an infinite qualitative conditional probability

structure to be represented by a probability measure on 225 would

be apparently quite messy and completely unintuitive. Some topological
properties of = could make the formulation more agreeable. But

this will be not our concern now.

5




Before we turn to some further details about the FQCP-structures,

we should perhaps first examine the power of Definition 3 by listing

its main consequences.

THEOREM 9 et <9, , | > be a FQCP-structure. Then

the following formulas are valid for all variables rumning over'ZZf

provided that in A/B, B is restricted to 7 :

(1) A/B~ A/B ;

(2)  A/BR¢/D & C/D= E/F = A/B 3 E/F
(3) A/B~C/D=>C/D~ A/B ;

(%) A/B~ C/D & C/D ~ E/F =>A/B ~ E/F
(5)  A/BR¢/D & C/DR E/F =>A/BR E/F ;
(6) A/BR /D& C/DR E/F =>A/BR E/F
(7) A/B2 C/D & C/D R E/F =>A/B4 E/F

we

we

e

we

(8) ~ 1is an equivalence relation;

(9)  A/BC/Dv ¢/D= A/Bv A/B~ C/D and each of the formulas

excludes the other two;

(10) A/C2B/Ce»AUD/CRBUD/C, if A B D;
(11) a/c~B/ceAUD/C~BUD/C, if A, B| D;
(12) AcB=>a/c4 B/C;

(13) AB/BR A/B;

(14) A/B ~ AB/B ;

(15) Al/C < Bl/D & Ae/c < BE/D =>4 U A2/C 2B U B2/D s if

Bl.I.B 5
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(16) A U4, /c 3 BIUB2/D->[A1/c<Bl/D v‘f.x,c,/c-g]a2 /cl,

ey AR PR N AN B RS gtz g AR Ry AT

il
(17) /B~ p/a ;
(18) 4A/B~p/a, if A] B
(19) (4) A/B 4 C/D «» AB/B 2CD/D ;
(ii)  A/B~ C/D<3-AB/B ~ CD/D ;
(iii) A/B —%_c/D <> AB/B 2 CD/D ;
(20) A/BC, % A,/B,C, & B;/C; ] B,/C,mp A B /c, 2 AB,/C,
(21) A/B,C; < 132/02 & B,/C; 3 A2/13202:A1131/cl~& .l12]32/c2

(22) Al/Blcl<~ .z12/132c2 & Bl/Cl 2 132/02 =>AlBl/cl-% AEBE/C2
(23) Al/Blcl% 132/02 & B /C; 3 A2/13202==> AB/C, A2BE/C2

(24)  A;/BiC, A A,/BC, & B,/C, < B,/C, =>AB,/C; 3 AB./C,

oo

oo

oo

oo

-

oo

(25) Al/Blcl 2 132/02 & Bl/Cl = A2/B2C2 ===->A1131/cl - A2B2/02
(26) Al/Blcl ~ ,1;2/13202 & 131/0l ~ 132/02—-=1>A1:Bl/cl ~ A2B2/02
(27) Al/BlCl ~ 132/02 & 131/0l ~ A2/B202=$A1B1/Cl ~ A2B2/C2

(28) o<\_{<n“ﬁ</ /N 8,38/ /\ 3j—> |

0<i<k k 0 <i<p,

-s

oo

antecedent -—% holds for some k , then in the consequent

= also holds;

7

Aruitoxt provided by Eic:




For notational convenience we introduce three vectors of relations

I'y A, =, defined as follows: I‘=<4,~,=%,—%,% >,
N:_%:_‘%:‘%>: E=<_‘J':~:'%:‘%:'%>:

i ’ fg i - l, 2, XY 5 I’eSpeC'tivelyo

A=< R

2

with coordinates Pi ’ Ai ,y =

In the following six clauses we assume Aj < Bj cC, for j=1, 2;
—— — L Ll J et

then for all i=1, 2, ..., 5,

.o

(29) A/B, T; A)/B, & B/C) Ay ByfComsb)/C = A,/C,
(30) Al/Bl Ty 132/02 & Bl/Cl A A2/132—>Al/cl = A2/02
(31) Al/Cl Iy A2/02 & 132/02 Ay Bl/Cl-bAl/B =5 A2/B2
(32)  A,/C T; A)/C, & By/C, A; A/B =>B,/C, = A)/B,
(33)  A/C Ty A)/C, & A)By A; B)/C)=>A /B = BJC,

(34)  A,/C) Ty A)/C, & 8/B, A, A/B,=> B /C, = BJC,

e

e

.o

.o

In the following we assume A C Bl cC&Ac B2 c C ; furthermore,

may denote any one of the following relations: < 9 < 9 ™~

Then,

(35)  4/B, : A/B,4&>B/C: B/C;

(%6) A/Bl : BE/CéA/BQ : Bl/C

oo

oo

(37)  B)/C: A/B 4= B,/C: A/B

oo

(38) AC/BD : AB/CD<=>C/D : B/D

(39) AC/BD : C/D<4=>AB/CD : B/D ;

(40)  B/D : AB/CD<=C/D : AC/ED ;
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(41)
(k2)
(43)
(44)
(45)
(46)
(47)
(48)

Again

(49)

(50)
(51)
(52)
(53)

(54)

(55)

A/A ~ B/B ;

9/A 3 B/B ;

/A ~Qfa ;

Q/A~Q/B ;

A/B 3 C/De=»TC/D R B/B ;
A/BX Q/a ;

AB/Q 2 A/B ;

AB/C R A/RC ;

is to be read as any one of < 5 = s ~ o Then,

A B/Q : A2B/Q <=>A /B : A2/B ;
A/BC : D/E & A/BC : D/E = A/B : D/E ;
A/B : C/DE & A/B : C/TE =>A/B : C/D ;

A/B : A/BC «>A/BC : A/B ;

Y< nlAy/B; 2 Cy/D ) =>cC /D 34 /B , if

Ai/Bi = 5 Ci/Di ;

(W
IA™M
ja
e
AN
s

[Al/A=‘A2/A£ cee R An/A &Bl/BaBE/Ba coe R Bn/B]==>

n
B, & A |4,

n
=>A/ARB/B, if A=\ A, & B-=
A WP X i=1 * i=1

BjL B, for if£j, 151, y<ny

If A & Be>A/0d B0, then <0, E8, <> is a

FQP-structure;

19




(56)

(1)
(2)

(3)

(k)
(5)

(6)

(7)

(8)
(9)
(10)

0<i <n[Ai/Ai+l£B/BB +1]=> By /B s AJA L, for
all permutations B on {1, 2, .e., n} , where A, A,
B.,cB,, (1=0,1, ce0, n), and AO/An+l ~ BO/Bn+l 3
and if in the antecedent - holds for some k s so does
it in the consequent.
Proof:

Substitute in Th. and use the definition of ~ .

Since A/B + C/D + B/F = C/D + B/F + A/B, and (by assumption)
A/B3 ¢/D & ¢/D =2 E/F , T, gives us A/B R E/F .

Use the definition of ~ .

Use (2) twice,

Obviously by (2) we have A/BS E/F . If A/B~ E/F were the
case for some A, B, E, and F, then E/F 2 A/B would be true,
and hence by (2) E/F 2 ¢/D also, contrary to the assumption.
Clearly A/BRE/F . 1If A/B~ E/F were true for some

A, B, E, and F, then also E/F R A/B; Thus by (5) we get
E/F 3 ¢/D, contrary to assumption.

The assumption implies A/B - C/D & C/D<4 E/F ; we can therefore
use (6).

Check (1), (3), and (4).

Use T, and the definitions of 2 and ~,

Since A/C + B/C + D/c = B/c + A/c + D/C and A, B| D,

we have A/C + (BUD) /C = B/C+ (AUD) /C; so, using T,

we get the equivalence.
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(11) Use (10) twice.
(12) ACB implies B=AUZEA and also B/C + B/c = &/c + (EA)"/c .
Since @/C | BA/C by T,, using T, we get A/C < B/C .
(13) Since ABcC A, we can use (12).
(14) Use (13) and T3. ,
(15) 1 B | B,, p/c + A/c+ 3 c+ (B U B,)"/D =
= Bl/D + BE/D + (AU A2) /C + (A1A2) /C; by T,
g/c ‘ﬂ)‘AlAQ/C » and so, using the assumptions, we get the
conclusion via T6.

(16) (i) Suppose A, U Ae/C 3 B, U 132/1) and not Al/C 2 Bl/D .

Then by T) Bl/ D3 Al/ C. Since
B/c+ (a, Uun)/c+ B /D+ By/D = A,/C+ A /C+ (B UB,) /D +

+ (B)B,) /D, T, gives Ae/c-% B,/D .
(ii) Suppose AU A2/C < B, U BQ/D and not AE/C—% BQ/D .

Then by Tl+ we have B2/ D 4 A2/ C . As before, the assumptions

and T, give Al/C 2 Bl/D .

(17) f/BR p/2 vy T,. But also p/a 3 ¢/B .

(18) A/B~ AB/B by (14). Since A| B, we have A/B~ f/B .
Finally, using (17) and‘(h) we have A/B~ g/0 .

(19) (i) A/B= C/D =» AB/B=< A/B=C/D= CD/D (Use (13), T

and (2)). But also AB/B= CD/D =+ A/B =< AB/B = CD/D= C/D .

(ii) Use case (i) twice.

(iii) Contrapositive of (i).
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(20) Special case of T5: put n=2 and take B to be the iden-

tical permutation on {1, 2} .

(21) Special case of T5: put n =2 and take B to be the reversed

permutation on ({1, 2} .
(22) - (27) Special cases of TS.

(28) Use T5 and prove by contradiction.

(29) - (34) Special cases of (22) - (27).

(35) - (40) Proofs are analogous to those of (29) - (3k4).

(41) From (39) we gét CD/CD D/D and from (40) D/D =< CD/CD .
Hence putting D = we have /0 ~ C/C for any C .

(k2) p/a~g/a=a/a ~B/B, hence @/A< B/B.

(43) /A~ A/A~afa .

(bk) Q/A ~ A/A~ B/B~q/B.

(45) Since X/B + ﬁ/B + S/D = E/D + 3/]) + S/B » we use T.

(46) /oL A/B<>A/BR 0/ .

(47) Ac/o 3 A/lce>c/a< 9/a by (38).

(48) From (38) we get AC/D= A/CD<=> C/D= /D, and
Q/D~@Q/2 . Hence (46) gives us the result.

(49) - (51) Use (35) - (ko).

(52) A/B=3 A/BC&=>C/D =R C/AB«=>C/AB = C/B<A/ECR A/B .

(53) 1If An/Bn-s Cn/Dn > letusput E, =4, , F, =B,

G, =¢C H, =D for 1<i<n-1 and En = Al s

i i+l ? i i+l -

Fn = Bl P Gn = Cl P Hn = Dl . Then from the assumption

< 2
we get { < n[Ei/Fi Gi/Hi] »  and hence by T,

Gn/Hn=$ En/Fn , which is impossible.
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(54) Assume Bn/B—’s A/A . Then Bi/Ba Bn/B-Q A /AR A/A
=>Bi/B-% Ai/A for all i=1, 2, «eoy n . Since

B/B+ ...+ B /B + AA =AM+ ..+ AJA+ B/B, and

Bi/B—% Ai/A , by (53) we have B/B- A/A which is impossible.

(55) Axioms T,, T,, T), and T, reduce to Scott's axioms for FQP-

1’ "2

structures, if we put @ for B in all terms of the form A/B .
(56) Trivial consequence of (28). Q. E. D.

Notice that Theorem 9 is also a consequence of Definition 2
and Theorem 6, if we put A/B= C/D equivalent to ABX D=<CD X B .
On the other hand, if we let A JJ_ B mean A/B~ A/Q , +then

Theorem 8 becomes a consequence of Definition 3 and Theorem 9.

This interplay goes further. We can put AC_B<=> A< A/B
and A‘C_ B«>A/B=3 A/Q , and also A/C| B/C <> A/C ~ A/BC ;
thence we can derive the basic properties of these notions in
qualitative terms. Again, we can put A 2 B<>A/Q =% B/Q ,
A2dB/ce>p/0=3 B/C and A/BX C<=>A/BXC/Q , and handle

the qualitative (absolute) probability relation as a special case

of qualitative conditional probability relation.

Iet <Q ,¢E€, P> be a finite probability space and let ~

be a partition of © . Then the function P(A/P) = Zﬁﬁ * P(A/B)
Be

is called the global conditional probability measure of the event A,

given the experiment (partition) 7 . Note that the value of this

measure is a function and not a real number, and that the following are true:
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(1) O<P(HP)<1,

P(A/P) + P(B/P) , if A]| B,

(111) P(A/P) =8, ir Aaef ,

(iv) P/ P) = P(4) , if VB[B cf? =>B| Al , where

A, Bell , ana (° is a partition of & .

(ii) P(A U B/p)

o B
L]

One might wonder if there is such an entity as a globally

conditionalized event: A/@Q . Such 'events' would be particularly

interesting because we know that iteration of conditionalizations

by events ("'((AO/Al) / A2) / ...r)l/ An does not lead to anything

new, since this is equal to A, / M\ A, . But ve might hope to
i=1

gef some new entities by changing the conditionalizing entities.
We know that the Boolean closure L[] of /’ is a Boolean
subalgebra of ct ;s and, vice versa, any Boolean subalgebra 06’
of Z’JZ defines exactly one partition /‘) of @ , /') being
Jjust the set of atoms of 06’ . (Remember that we are working
now with finite Boolean algebras.) Therefore it seems reasonable
to consider A/fd as an element of the quotient Boolean algebra
m/ EX[P] , vhere analogously to the case of A/B (where we
relativized the set of possii)le outcomes to B ), we now relativize
the set of possible events to the Boolean algebra CE[f’] . The
symbol A/f7 then becomes a legitimate set=theoretic entity, with

a clear probabilistic meaning:

A/? = the set of events indistinguishable from the event A,

given the events in the aglebra CA[P] , generated
by the experiment ﬁ .

‘ie shall come back to this problem in Section 3.3.
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The notion of a globally conditionalized event plays an important
role in advanced probability theory, and it may be of some methodological
interest to study a qualitative probability relation on these entities.
But beyond stating the problem, we shall not dig deeper into the

matter here.

We now turn to the representation theorem for FQCP-structures.,

THEOREM 10  Let <@ , &€, % > be a finite structure, where

 1is a nonempty finite set; &t is the Boolean algebra of subsets

of &, and <L is a quaternary relation on %. Let

CE = (a:p/a3 a0l .

0
Then <Q , 144 s < > is a FQCP-structure if and only if there

exists a finitely additive conditional probability measure on %

such that <@ , &%, £# , P> is a conditional probability

space, and for all A, C e cr and B, D¢ %’O:
A/BR ¢/D<«>P(4/B) < P(c/D) .

Proof:
I. The existence of a conditional Probability measure on % .
Suppose that <0 , £#, R > is a FQCP-structure. Iet us
define m real n-dimensional vector spaces 7)'3/ (m = | %OI s

n=|qQ|, Be é’/to ) as follows: The basis of Ug is the

1Ny

set {<({w}) , B >]a> where as usual, the hat denotes

e’
the characteristic function of the given set s written in the form

of an n-dimensiocnal vector:
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A = <A(a)l), A(we), ceey A(a)n) >
Q N I icul
where = {wi}i=l . n particular,
<(AUB) C> = <A C>+<B,C> for A| B, ana

A

<4 C> = <aoB, C> for A, Bec &% and Ce %.

In fact, in the ordered couple < A, C>, C is just an index

from (72'0 . Weput A/C for <A, C>, in order to simplify

= err

the notation.
IT we take the (external) direct sum 74/a/= @ @oA/
j A e %O

: of all indexed vector spaces U/ for A ¢ Zf’ then the vectors

A 0’
in /Zl}/are m-tuples

< vl/Al’ v2/A2, cen vm/Am >, where (Ai}ljr;l = %O

and v, € L}{Q) » for 1=1,2, ..., m. The operations in ///

satisfy:

(i) < vl/Al, v2/A2, cee vm/Am >+ < wl/Al, WQ/AQ, cee wm/Am > =
= <wv + wl/Al, v, * W2/A2, ceey VO F w“/Am> ;
(ii) a < vl/Al, v2/A2, ceey v“’/Am > = <ozvl/Al, an/Ae’ ceey (xvm/Am >

where Vis Wy € WQ) for i=1,2, ..., m, and « € Re .

Obviously Z/aA/ = Z{/aA/ ,y 1if %dA/ is the subspace of vectors
i i i
of 71/&'/of the form




[ < 0/A,, O/A2, coes O/Ai_l, v/As, OfA; 75 «ees O/Am> ,

where Vv € ‘Z}?Q) , i=1,2, eeey, m.
We can in a one-one way associate with the entity A/B a vector

< O/Al, cooy K/B, coey Q/Am_> from ‘1h)g,, and put
A/BR C/DES<O/A), vuuy /B, vuu, O/ >R<0/A, .., /D, oo, O/A >,

so that the problem is finally formulated in the geometric language

GRS S ARSI e s Fisn - sty
o ] y— , r ~ 7 [ gt
I

of vector spaces. In.particular, the set of conditional entities

{(A/B: Ac L & B¢ 2926} is 'translated' into a nonempty finite

4

set of vectors from 1k}/’with rational coordinates with respect

to the basis

LExtr Lok
e

(< O/Ay, voes O/A; 1, ({(0))7/A;, O/A; 15 «vvy O/A > : e @ &1=1,2,..., m].

~:"". SN

Having done this, we are ready to use Corollary 5. In fact,

v DR
' 1
PR

translating T, and T, into vector language, we get the necessary
L 6

and sufficient conditions for the existence of a linear functional

Fom
4

At Th )
H

/A Zo*:—aRe such that

ro ]

/B3 C/D «>v(4/B) < ¥(C/D)

SRR g WG
T ——
Lo

is satisfied for all A, C ¢ cE , By, De f?fb ;3 here we put

A/B for < Q/Al, oo, AB, ..., O/Ami? and C/D for

TR AR TN N SO 1 31Ty 7 NOAVE ATy k¥ 1~ v
1 w. [ |

< O/Al, +eey O/D, ..., O/A > . T, implies V(4/B) > ¥(B/c) = O

and Tl forces V¥ to be strictly positive for ﬁ/ﬂ . In particular,

¥ can be normalized by defining

@(K/B) = ¥(d/5)

¥(Q/9)

e A N SR MR LN i e 2 A A
! |
o v e
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Theorem 9(1%) gives us @(4/B) = ¢((AB)"/B) . Suppose AC B and
CcD; then putting A@ D2 C@Be» A/B= C/D, we can translate

the countably many consequences of T5 into consequences of Q5
(Definition 2 in Section 2.4). Then, as in the case of the repre-
sentation of FAQQP-structures, we apply the theory of nets (Y. Acze’l,
G. Pickert, and F. Radd [35]). In particular, A/A~ B/B is

translated into A@B~B@A; if A CB cC, for i=1, 2
then Al/Bl% A2/B2 & Bl/Clé 132/02=>A1/cl=/. A2/02 is translated
1ntoA1><B2 A2x1&1x02 2x1=->A1x02 A2><Cl.
Hence, as for FAQQP-structures, there must exist a linear functional

f : ’U/(Q) —>Re (see the construction in the proof of Theorem 7

in Section 2.4) such that
o(A/B) < (C/D) «=>£(R) + £(D) < £(8) - £(B)

for all A, C e, B, De ¢k, such that AcB, CcD.

N

Hence for some 1 : [0, 1] — [0, 1], 'r](cp(K/B) = -f-‘-(-%- , if
£(B)

A c B . By the additivity of ¢ on M/and of £ on %) we
find N to be a constant mapping; and after normalization of f
it becomes even the identity mapping. Thus, for A c B cC we
have (4/c) = 9(&/3) * o(/0) .

We can now collect the results of our proof in the following
conditions:
(1) 0<o(a/B) <1;
(11)  9®/0) = 1
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(ii1) o((a U B)"/C) = o(A/c) + o(B/c) , if A ] B;
(iv)  9(4/B) = o((8B)"/B) ;
(v) o(3/C) = o(y/B) - o(3/C) , if AcBcC.

It is easy to show that (iv) & (v) imply
o((aB)"/C) = p(A/BC) * o(B/C)

Finally, if we put P(4/B) = ¢(&/B) for A e &, Be %’O ,

we get the desired conditional probability measure for which

A/B< C/D<>P(A/B) < P(C/D) for all A, Ce&f , B, D¢ Xy - (2.14)

II, DNecessity.

It is a routine matter to check that the conditions To - Tg
are also necessary for the existence of a conditional probability
measure P on et . Q. E. D.

One of the basic questions of Representation Theory is the

problem of the uniqueness of the representing function. That is

to say, we would like to know the structure of the class of measures P
satisfying the representation condition (2.14).

Unfortunately in no structure here studied is the answer very
simple. For example, in the case of the finite qualitative probability
structures (FQP-structures), we can think of several apparently
unrelated measures that represent the ordering 2 . Given one
measure, we can construct another by, roughly speaking, moving
its values a little bit, keeping the additivity law valid, and

at the same time not violating the validity of the inequality.
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This construction can be made in uncountably many ways showing no

particular structure. Similar problems will appear with qualitative
information and entropy structures.

It is known that in atomless Boolean algebras the representing
measure is unique. On the other hand, atomless Boolean algebras
i are not the most important ones.
: The problem of uniqueness in general nonlinear measurement
: structures certainly deserves some further study.
S Another problem is to find those conditions that must be
imposed on the structure <@ , 52?, =< 5 ﬂ.> in order to find
a probability measure P on C# such that
(1) A< B<P(A) <P(B) ;
(ii) A]| B<>P(aB) = P(a) * P(B) , where A, BelE .

Yet another class of questions arises, when we want to represent
the various possible combinations of the 'relations' A <4 B, A.u B,
4 A/B3 ¢/p, a/c| B/C, A c, B/Cc, A/C C. B/C, etc., by an adequate
probability measure.

These problems are outside of the scope of this work.

: 2.7. Additively Semiordered Qualitative Conditional Probability

Structures

Tn this section the solution of problem (Ph) will be discussed.
In particular, the basic properties of the quaternary relation %”
will be presented. The intended interpretation of the formula

A/B >‘C/D will be: event A given event B is definitely more probable

AR AT AN R fa




than event C given event D. If we put A/B>C/D <=
&> [A/B >C/Dv - C/D >~A/B] , then an equivalent structure
is obtained.

Since (Ph) is a generalization of (P5) and (PE)’ one may expect
that the properties of > will resemble somewhat the properties
of =2 in problem.(P5) and of >~ in problem (P2). In addition,
the proof of the representation theorem will be a combination of
proof techniques used for representation theorems of semiordered
and canditional probability structures.

The relation > , called the semiordered qualitative conditional

probability relation is at least a semiorder. The additional

properties are dictated by the probabilistic interpretation.
Perhaps we should point out that some of the notions discussed

in Section 2.6 have their 'semiorder' counterparts. For instance,

AC] B&>A/B>A/0, ACIB«>/0>A/B (Aclf and Be )

are the semiordered relevance relations.

We shall not try to speculate about the use of these notions.
Maybe they will have some importance in a rather general qualitative
theory of causality.

Much recent work in inductive logic and methodology of science

has been concerned with rules of acceptance or rejection (of scientific

theories). The simplest rule studied allows a hypothesis or theory,
represented by the event A, to be accepted iff P(A) > 1 - €

(0 < &€ <1/2), or in the conditional version, P(A/B) > 1 -€ .
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In terms of FASQP-structures or semiordered qualitative conditional

probability structures this rule gets a more polished and symmetric

form:

(1) A is accepted &> A~ Q ;
A is rejected<=>A =~ ;

(i1) A is accepted given‘ B&>A/B~Q/Q ;
A is rejected given B<=>A/B ~ f/o .

Since = 1is not transitive, one cannot hope to describe too
much with it. The set of all accepted events does not form even
a filter (it is true that A~Q & AcCB=>B=Q , but
A~Q &B~Q=pAB=~Q is false)} which is an obvious algebraic
requirement of a deductive system: The only possible way to remove
this weakness while retaining the rule, is to think of % as a
kind of lattice rather than a Boolean algebra; in this lattice
~ will still have the probabilistic interpretation, but the rep-
resentation theorem for this new structure may fail. After all,
the acceptance and rejection predicates are supposed to be meant
for (empirical) theories; and the set of these forms at best a
Brouwerian algebra. Moreover, we hardly would want to consider
numerical probabilities for evaluating the degree of acceptance,
since we defined the notions of acceptance and rejection in terms
of inequalities. Thus, considering % as a lattice and =~ as a
probabilistic indifference relation, we may conceivably get a

deductive system of accepted theories. But we shall not deal
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further with this rather delicate philosophical problem. In general,

threshold-type statements are always rather weak from the point of

view of their content.

g We turn now to the definition of FASQCP-structures.

DEFINITION 4 A triple <Q , &%, > > 1is a finitely additive

semiordered qualitative conditional probability structure (FASQCP-

structure) iff the following axioms are satisfied when all variables

run over &€ ; provided that, in the formula A/B >~C/D, the

events B and D are elements of %O ={Ae X : ~p/a~an/Mm):

RO Q@ 1is a nonempty finite set; £ is the Boolean algebra of

subsets of @ , and > is a quaternary relation on % 5

R, /2% P/ ;
R, = A/B*™A/B;

2
Ry A/B ~ AB/B ;
‘ Ry, ¢/D>B/E=C/D>A/E, if AcCB;
R T WAVA A, ~By / B, ] =
: 5 0<k<n'k 0<i<k k0</1\<61

: = /\ A/A P /\ B/B for all permutations B
0<i<n 0<i<n

on {1, 2, ..., n} , if -—.Bk+l/ A B, > /\ 131/13o

k 0<1i<k

?_9:-[: k=l, 2, eo ey n"‘l;

Therar IO 25 SR Srapany)
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R Y< nlAy/B;y > Cy/D; &2 By/F, - G./H,] =

==>[An/13n > Cn/Dn—x> En/Fn > G n/Hn] if

z [Ai/Bi + Gi/Hi] = [Ci/Di + Ei/Fi] ;

=
i<n i<n
: Remarks:
(i) A/B~ C/D is of course equivalent to

VE F[A/B ~ E/F & C/D ~ E/F] , where A/B~ C/D
J

means = A/B >C/D & -1 C/D >A/B ; several other notions

can be introduced as in the case of FASQP-structures.

(ii) The assumption — B, . / /\ B.> /\ B, /B (2.15)
3 et 0<i<k® o0<i<kr O

3 for k=1, 2, oo, n-1 in axiom R5 is a little bit strong,
3 since & + P(Bi/ci) > P(_Ai/BiCi) is enough, too. Because
there is no way of representing a formula & + P(A/B) = P(C/D)

in terms of » Ve have to leave out the case of equality.

(iii) Axioms R, - ¢ are just the combinations of axioms for

: FASQP-structures and FQCP-structures. Certain axioms are given

it

2t aarh

also by Suppes [16]. As expected, axiom R6 is the qualitative
version of the addition law, whereas RS provides the multiplication

law. Naturally, all important properties of the relation -

RS IR ANAR S 3

are hidden in these two axioms.
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THEOREM 11  Iet <@ , €&, = > be a FASQCP-structure. Then

the following formulas are valid for all variables running over ZA s

provided that in A/B, B is restricted to z’/to :

(1) Al/Bl - Cl/Dl & A2/B2 > 02/D2=> [Al/Bl>- 02/1)2 v A2/B2 >.cl/Dl] ;
(2) Al/Bl>~ ¢/D & C/D & E/F => [Al/Bl }-AQ/BE v A2/B2 > E/F] ;

(3) A/B¢&C/D&E/B>B/D=>AUE/B>CUG/D, if A]| E;

(4) AUE/B>CUG/D =>[A/B&C/D E/B&G/D], if C| G ;

(5) A/B & C/D<«>C/D & A/B ;

(6) AcB=>=-14/C >B/C;

(7) A/B>C/D & C/D>E/F = A/B>E/F ;

(8) ~4/B~p/C=4/B>p/C;

(9) ‘VI i< n[Ai/Bi >~ Ci/Di] = Cn/Dn - An/Bn » i

l'zii/Bi = x
n i<n

IN™M

i

(10) A/B>C/D&/0>C/D, if Bc A

(11) &/A >¢/B ;
(12) ¢/D & A/B=>¢C/D > @/F ;

(13) Al/BlCl > A2/B202 & Bl/Cl >~B2/02=> AlBl/Cl > AEBE/CE , if

- A2/B202 - 132/02 5
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(14) Al/BlCl > B,/ C, & B,/C; > A2/13202==> A B /Cy >~A2B2/02 ,

if -1A2/B202>B2/02;
(15) A/B>C/D=>AUE/B~CUF/D, if FCE&E] A;

The proof goes along the same lines as the proof of Theorems 4
and 9 above,

Note that all 'gddition laws' go through smoothly (remember
that < €, > > is a finitely additive semiordered structure),
whereas the 'multiplication laws' sometimes fail., For instance,

there is no simple counterpart of the theorem
~ k / = =
A)/Cp ~ A/C,=>[a)/B) 2 A/B e B,/C, A B )/C]

if A, cB cC, (i=1,2), which is valid for qualitative

conditional probability structures. If A X B »C X D denotes
the semiorder version of the quadratic qualitative probability

relation, then, as one can check easily, the transformation
Al/Bl = AZ/BQN»Al X By A, x B, for A, CB. (i=1,2)

is valid, but not conversely! Therefore we cannot hope to give a
representation theorem in a complete form. The inequality
P(A/B);Z P(c/D) + & (0 < & <1) behaves with respect to
multiplication quite irregularly. For example, the standard
cancellation law: AXB3CXD&CXESF xB=AXELF xD

is valid only under very special conditions.




More specifically, we are able to show the following theorem:

THEOREM 12 (Representation theorem) Let <@ , ¢L, >~ > bea

finite structure, where { is a nonempty finite set; et is the

Boolean algebra of subsets of Q and o~ is a quaternary relation

on & ; 1et UE, =(a:-p/a~a0).

Then <Q , 4 P >~ > 1is a FASQCP-structure if and only if there

exists a finitely additive probability measure P on % and a

real number € such that all variables run over m and @he

event B in A/B is restricted to %O , the following conditions

are satisfied:

(1) A/B>c/D P(A/B)>P(c/D)+€ and 0< €& <1

(2) P@/9) =1 ;
(3) 0<P(4/B) <1
(1) P(A U B/C) = P(A/C) + P(B/C) , if A] B;

(5) P(AB/B) = P(4/B) ;
(6) O<~i:<n[1>(1,\k/ /\ A) > P(BB/ /\ Bi)+£ ]

O<1<k

== /) A/ By > B /\ By / By) + &

O<1<n O<1<n1

for all permutations B on (1, 2, ooy n}, if

P(ﬁkﬂ/O /\ B) < P( /\ B /B)+6
<i<

f_‘g_{'é_];l k=l, 2, voey n"lo
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Tne proof is a combination of the proofs of Theorems 5 and 10.

[
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From a measurement-theoretic viewpoint FASQCP-structures

.__

S ) L bty

are quite complicated. We can say nothing about the uniqueness
of the representing measure, except that some periodic transformations
(with period & ) should lead to new measures, satisfying conditions
(1) - (6) in Theorem 12,

In closing this chapter, we can claim that the methodology
described in Section 1.4 has turned out to be very useful in proving

all the basic measurement-theoretic theorems about prcbebilistic

relational structures. In the next two chapters we shall present

some further applications of this method.

5.  APPLICATIONS TO INFORMATION AND ENTROPY STRUCTURES

-

5.1. Recent Developments in Axiomatic Information Theory

Information theory deals with the mathematical properties of
conmunication models, which are usually defined in terms of concepts

like channel, source, information, entropy, capacity, code, and

which satisfy certain conditions and axioms.
Our knowledge in this field has expanded prodigiously since

C. E. Shannon gave in 1948 the first sufficiently general definition

of information and entropy. An indication of this expansion can

be gained from the survey and extensive bibliography in R. S. Varma

and P, Nath [38]. 1In particular, the last ten years have seen a
considerable interest in the abstract axiomatic treatment of the

concepts of information and entropy.
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Shannon's original axioms for the entropy measure have been
replaced several times subsequently by weaker conditions (see
Fadeev [39], Khinchin [4O], Tveberg [41], Kendall [42], and others).
The weakest set of axioms known seems to be that given by ILee [43].

Réhyi [44], on the other hand, has extended the notion of
entropy by using the concept of a generalized probability distribution.

The above characterizations of entropy all involve essentially
probabilistic notions.

Ingarden and Urbanik [45, 46, 47], and de Feriet and Forte [48],
have given axiomatic definitions of entropy and information measures
without using probability measures. Similarly Kolmogorov [49, 50]
has shown that the basic information-theoretic concepts can be
formulated without recorse to probability theory.

Ingarden and Urbanik need to assume for their definition of
entropy a sufficiently large pseudometric space of finite Boolean
rings, in order to be able to state the continuity of the entropy
measure. On the other hand, Kolmogorov uses the concepts of recursive
function and random sequence. Still another approach is known in
coding theory.

Quite recently, several information-theorists have tried to
construct the information-theoretic notions by using techniques
from statistical decision theory. For example, Belis and Guiasu
[51] propose a notion of a 'qualitative-quantitative information
measure,' defined in terms of utility, The idea is simply the

following: Given a probability space <Q , Z&, P>, they
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intrcduce, besides the probability measure P on the algebra of
events 7% , a utility function U, which assigns to each
element of a partition JJ of @ a non-negative real number:
/9

the entropy measure H of the partition is then given by

H(¢?) = - £ u(a) * P(a) ° log P(8) .
Ac

Weiss [52] gives. an axiomatic system for subjective information
which is almost identical with the theories of probability and
utility of Savage [6] and Pratt, Raiffa and Schlaifer [53].

In a related field, that of semantic information theory (in
the sense of Bar-Hillel and Carnap [54]), there have also been
advances (see especially Hintikka [55, 561).

As can be seen even from this cursory review of recent develop-
ments, there is available an immense wealth of axiomatic material
dealing with purely logical and foundational aspects of information
theory. The above-mentioned foundational attempts are all directed
in the main towards axiomatizing the basic information-theoretic

notions in the form of functional equations. In this paper another

approach is proposed. We shall advocate, instead of the amalytic

approach, an algebraic approach in terms of relational structures.

The latter approach is more relevant to measurement or, generally,

epistemic aspects of information, unlike the former which tackles

the a priori, or ontological aspects of information-theoretic

problems,
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In fact, the main purpose of this chapter is to give axiomatic

definitions of the concepts of qualitative information and qualitative

entropy structure, and to study some of their basic properties.

The chapter culminates in proving certain representation theorems
which elucidate the relations these notions bear to the standard

concepts of information and entropy.

5.2. Motivations for Basic Notions of Information Theory

The standard notion of information is introduced usually in

order to answer the following somewhat abstract question: How much
information do we get about a point ® € @ from the news that
belongs to a subset A of @ , that is ® € A and AcCQ ?

It is rather natural to assume'that the answer should depend on,
and only on, the size of A, that is to say, on P(A), where P

is a standard probability measure on the Boolean algebra ZZ? of

subsets of Q . In other words, the answer should be given in
terms of a real-valued function I , defined on the unit interval
[0, 1] . Hence, the amount of information conveyed by the statement

w e A will be IcP(A) , or in a simpler notation, IP(A) . It

is also natural to require I to be non-negative and continuous

on [0, 1] . ©Now, if we are given two independent experiments

which are described by statements w € A and we B (4, Belf,

w e @), then it is reasonable to expect that the amount of inforuation
of the experiment described by we A& we B, that is we AN B,
will be the sum of the amounts of information of the experiments

taken separately.
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: Given & probability space A =<Q, &,P>, let A Il B
mean that the experiments with outcames w ¢ A and ® e B are
g probabilistically independent (A, Be ¥ ) ; then we can collect

our previous ideas in the following assumptions:
} (1) The diagram

74 T

/ 0 ¥l
1 (3.1)
[, 117 1

is commutative, that is, I<P = IP s and I is continuous;

(ii) AﬂBaIP(AnB)=IP(A)+IP(B) , if A, Belt .

It is a very well-known fact that the only real funetion IP
which satisfies the conditions (3.1) is IP(A) =~ « log P(4) ,
where & is an arbitrary positive real constant. It is a matter
of convention to choose a unit for measurement of the amount of
information which makes o =1 .

Let us now assume that we are given several experiments in

the form of a system of mutually exclusive and collectively ex-

T SN AL LV A AL AR IR L NN S

haustive events, a/‘) = [Ai}?zl , Where
n : : *)
UA=Q, and A.ﬂA.=¢ for 1i# j and i, j<m .
. i i J -
: i=1
: *). . .. .
3 Varisbles i, j, k, 1 will always run over the set of

positive natural numbers (1, 2, 3, ... } .

102




What we may well ask is the average amount of information conveyed

by the system of experiments jg .

Since we are assuming the probabilistic frame /& , there is
nothing more natural than to take the average amount of information,
called the entropy H , to be the expected value of the amount of
information:

HP(P) = A5‘5013(14) . IP(A) , Where IP(A) = -1og2P(A) . (3.2)

The entropy measure H is usually characterized by a system of
functional equations using more or less plausible ideas about the
properties of H.

Let WD be the set of all possible partitions of the basic
set of elementary events & of the structure /\ . The elements

of ED will be called for simplicity experiments, for i e UI) ,

where A € 63 is an event, representing a possible realization
of the experiment f) . Then the functional equations for H have

the following form:

(1) The diagram

P HP :_[O, +oo]

<P By oeee, B2 (3.3)
H

[0,1] x[0,1]%X «.. x [0,1]

is coomutative, that is, H¢< P, P, .eey P> = HP , and

H is continuous;
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(11) H({4, 4}) =1 if P(4) = P(A) ;

(i11) H([B| AnB, An BIP ) = H(H) + P(B) ° H({4, 4)) if A B;

here A, Belf and [B]| AN B, AN B’ is the experiment
vhich is the result of replacing B in the partition {°
by two disjoint events ANB, ANB. It is assumed,

of course, that B ¢ 43 .

It was Fadeev [39] who showed, using Erdds' famous number-
theoretic lemma sbout additive arithmetic functions (see Erdds [57]),
that the only function H? which satisfies the conditions (3.3)
has the form (3.2),

What has been said so far is pretty standard and well known.

In the sequel we shall point out a different and probably new ap-
proach. Instead of constructing functional equations and by proving
the validity of the formula (3.2) and showing that they adequately
mirror our ideas about the concepts of information and entropy,

we propose here to approach the problem qualitatively,

Following de Finetti, Savage [6], and others, we shall assume
that our probabilistic frame is a qualitative probability structure
(FQP-structure) <@ , f, =& > » Wwhere A2 B means that the

event A is not more probable that the event B (A, Be CF) .

In the general case there is no need po associate the binary relation<
with any subjectivist interpretation of probability,

The question arises whether we can introduce a binary relation <
on the set of experiments U]) in such a way that this relation will

express satisfactorily our intuitions and experiences about the
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notion of entropy. In other words, we would like to say under what

conditions on < we have:

ﬁl_ —.\4 402 <= Experiment ﬂl does not have more entropy

than the experiment 0/‘)2 .

In a way this dquestion belongs to measurement theory.(see Suppes
and Zinnes [58]). When we study any property of a given family of
empirical objects, or a relation among these objects, one of the
basic epistemological problems is to find under what conditions
the given property or relation is measurable; more specifically,
what are the necessary and sufficient conditions for there to exist
a real valued function on the family of empirical objects whose
range is a homomorphic image of the set of empirical objects in
accordance with the given property or relation?

In the case of entropy this amounts to knowing the restrictions
to be imposed on < in order that H, of (3.2) exists and further-

more satisfies the following homomorphism condition:
A /D \ . 9]
P20 =R <), 2 P, B 6w

It is a trivial matter to notice that the relation ~<‘ has to

be reflexive, transitive, connected, and antisymmetric with respect

to the relation +~ (defined by 031 < 032 <> J)l < @ & @ =< 03. ’

if fl, JE) € P ) In other words, < has at least to be a
linear ordering modulo the relation ~ . But these trivial assump-
tions are obviously insufficient to guarantee the existence of so

complicated a function as HP .
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Likewise we can introduce a binary relation '%" on the Boolean

algebra 124 » and consider the intended interpretation
A £° B @ Event A does not convey more information than event B.

Again, we shall try to formulate the conditions on <§ which allow
us to find an information function I, (H?) satisfying both (3.1),
and the following homomorphism condition:

A4 BT (A) < I,(B) , if A, Be &l (3.5)
Hence our problem is to discover some conditions which, though
expressible in terms of £ (<& ) only, allow us to find a function I

(Hp) satisfying (3.1), (3.5) ((3.3), (3.4)).

This approach is interesting not only theoretically but also from
the point of view of applications. In social, behavioral, economic, and
biological sciences there is quite often no plausible way of assigning
probabilities to events., But the subject or system in question may be
pretty well able to order the events according to their probabilities,
informations, or entropies in a certain qualitative sense.

Of course, it is an empirical problem whether the qualitative
probability, information, or entropy determined by the given subject
or system then actually satisfies the required axioms. But in any
case, the qualitative apprcach gives the measurability conditions
for the analyzed probabilistic or information-theoretic property.

3.3. Basic Operations on the Set of Probabilistic Experiments

In Section 3.2 we stated that the main algebraic entity to be

used in the definition of an entropy structure is the partition

of the set of elementary events . We decided to call partitions

experiments and the set of all possible experiments over  has been
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denoted by [FD . For technical reasons we shall assume sometimes
that every partition contains the impossible event [5 .
We can, alternatively, analyze qualitative entropy in terms

of Boolean algebras generated by experiments (partitions of the

sample space). Experiments are the s ts of atoms of these Boolean
algebras, and there is therefore a one-one correspondence between
them. Formally we get nothing new.

If we are given two partitions /pl s ()2 , we can define

the so-called finer-than relation ( @ ) between them as follows:

(s o ‘*’\Vz/xe 2 EBG @(A c B) (3.6)
An equivalent definition would be:

ﬁ]_g @H\%(Ae ﬁ2@A= UBi) for some Bi’s

i<k

i<k.

from 12 <

We have in particular,
... = (@, &, AB, AKC, ABC) = (f, &, 4B, 4B} = (B, A, A}.

Now, given a relation on a set, it is natural to ask whether
it is possible to define some kind of lattice operations induced
by this relation. The answer here is positive. The first operai:ion

of interest is called the product of experiments:
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p]_'t//De={AﬂB:A€/‘i&B€W2} (091,@6!}]))(5.7)

or, more generally,

.

f - AN /SRRy BN

i__<_n

=
3

o)
N
3

L <

{’l . f; is the greatest experiment which is finer than both (¥

and Pz; that is,’
W PRl -G h,
1) PR & LPeP=ePcfl - F.

Obviously ﬁlg /?2‘:)/)1 /2 = '/ol

The dual operation is called the sum of .experiments and is

defined as follows:

;f\) s I I I “/O] , where ]_[ denotes the standard
1 2

fer

7

D
Jo

m 1A[

generalization of the operation to sets of experiments. A

more concrete definition is the following:

Jg_"" PQ = (.\Z Ai:AliAai«_...}_An s a maximal
i<n

chain of overlapping events in ﬁl U 0% } , where Ai}_ AJ“

ﬂAiJ_Aj, i, §j < n.
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ﬂl + 002 is the smallest experiment coarser than both ﬂl

and '2; that is,
W Le f+He e i+ R,
1) fePe fe= i+ oep .

Again it is clear that ,ﬂc_c [’2¢=>¢?L+ Jg = ﬂe

The partition 0/= {P, 0} is called the maximal experiment

and the partition (L= {{0w} : we 9} U {f} is called the minimal

experiment. Clearly @g ﬂ _c_:&’ for any /) € ﬂ) . Equally

straightforward are

f-(}/ =;7o and W—i—ﬂ =ﬂ/ ’
[)°Q' =6Z- and f’-&ﬂ =/) .

The total number of experiments e, over a finite set
with n elements is given by the following recursive formula:

n

n
ep=1% € 41 = .ZZ (i)ei .
i=0

The reader can easily check that the structure
< P, (-9/, [b s+, , & > satisfies the lattice axioms.
Unfortunately, it is not a Boolean algebra, so there is no hope
of getting any useful entropy measure on it without further assumptions.
The help will ecme from the independent relation ﬂ_ on experiments.

The structure <8 ,[P , @> in which the product and sum

of experiments are defired will be called the algebra of experiments
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over the set of elementary events 9 . The reader may be familiar

with the following chain of isomorphisms:

[P = lattice of equivalence relations on 0 2 Lattice of
complete Boolean subalgebras of X = Iattice of subgroups
of a finite group = lattice of subgraphs of a topological
graph = Finite geametric system of lines and pencils 2 Lattice

of modal operators on 144 satisfying the modal axiom system Ss.

Any one of these structures could be used as the underlying
algebraic structure of the entropy measure. For example, in

graph representation, the entropy measure could be viewed also

as a measure of the relative complexity of graphs:

Hpo (?) = -AEpP(A) * 1log,P(A) , where P(A) =+—$’- , Aelf,

and [‘) is the partition of the set of vertices V of the graph ?/.
In the same way we can talk about the complexity of a group. By

the comglexitz of a mathematical structure we mean here a function

of all the elements of a (complete) set of invariants of the given

structure.

3.4. Independent Experiments

DEFINITION 5  Let Qd =<, 28, * > be a FAQRP-structure

and Jff <4, P s ©> Dbe the algebra of experiments over 0 .,

Then we shall say that two experiments are independent, fl ﬂ f; ’

if and only if
pe feBe £,=»a|B, goran A Becll .
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Some of the basic properties of independent experiments are

stated in the following theorem.

THEOREM 13 If <Q, % , | > is a FAQQP-structure modulo ~
and < Q, P s €> 1s the algebra of experiments over § , then

the following formulas are valid for all /°, fi, 7, e[P :
v L
(2) PLP = -0,
G Al =0l A
W AL K e =1 Fs
) rlr=pl s
6 AL Gl Bl Ol P L P, s
. £ lre f’zngi°=->./pl'y021[,ﬂ, if AUB=9,
Ac fl, B ¢ /”2,
® LLE- e 1 Rl A= LF FLey;
) LLA e PLA,=" £ =T Lo /7= L) 5

w0 Alfefiea=r=0 .

The proof is a simple application of Theorem 6. The assumption
that <@, &£, < > isa FAQQP-structure is inessential. We
could as well assume any FQCP-structure or even any other structure
in which the relation J_|_ is defined for events.

The reader will notice that the relation J_|_ on l}m is not

unlike the disjointness relation J_ on % . In particular,
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2=/\B:4UB=0¢& A| B} . If we define similarly:

—

W = lf"-al (4 and J)l N [)2'—' (71 d 772)—. s ‘then

we get a Boolean algebra of those experiments, for which r
exists. If £ exists, then it is uniquely. détermined, as we
can easily check using Theorem 13(9). Analogously, ﬂl A /;
is uniquely determined, provided that it exists.

It is unfortunate that the independence relation ﬂ_ on WD
generates a Boolean algebra which is only a proper subset of the
lattice [}D « We would hardly want to rule out those experiments
which have no complements according to definition given above;
for the entropy measure H? is defined on the whole set ED .

On the other hand, it is highly desirable to have on ﬁb a richer
structure than a laftice.

In the following chapter we shall make some use of the 'partial!
Boolean algebra < ED s o s N, -, C}/, CZ’ > 1in the Representation

Theorem of qualitative entropy structures.

3.5 Qualitative Entropy Structures

As already mentioned in Section 3.2, we shall develop here a

qualitative theory of entropy based on qualitative probability

theory. The only primitive notions used will be the qualitative
entropy relation <’ and the independence relation ﬂ s both

relations over E3> s, the set of experiments,
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In this chapter we shall use the following notation:
1f Ae &, the experiment {A, A} 1is called a Bernoulli

experiment; the variables /3, ﬁ.L’ 62, eese Will run over Bernoulli

experiments. Familiar enough is the fact that each experiment

/3 € ﬂ) can be written as a product I ' @i , Wwhere the family
i<n

{ 031}1 <n is so chosen that no subset of it is sufficient for

the job. This representation, unfortunately, is not unique.

Experiment JD is called (locally) equiprobable if and only if

VA, Be ¥ (a Be & = A~ B) ., The variables for equiprobable

experiments will be (C;, 51, 52, veee

We call two experiments equivalent modulo ~ , in symbols,
P oo : P
’/1 /92 J 1f and Only 1f /32 [Bll Al] ([B2| A2](0°0([Bnl An]fl)...))’

where \/ (A, ~ Bi & Bi € ‘/01)

<o and the right-hand side of the

equation is an experiment. The relation ~ on ',P is clearly an
equivalence relation.

We define as before:

A B (B2 L 2 A)

fl’%'/%‘l’_‘ I <N
ﬂ/"" {fS: Q} ’

&= (o) wea).
Let W=ﬁ10/)2®(/)=/)1'Wg&plll.fg&"f]j/JENy/)5
let B ={[76P - 3[)1’”92[ f= /‘)10 (fZ]}; and let09 enumerate

DUCH I ARG E N
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B , so that B {09 } . Then we define:

A

P =<d,, d2, eees & >, where, if dj:ﬁi (1 e {l, 2, eeuy k}) ,

then d, =1, and \ijﬁi &l_<_35k(dj=0); otherwise

A

Z°=(§,l+(§2 for some Gll,(QeeP . et (F =<0,0, ..., 0>

be the zero vector. In other words, 6’ € U/(B) , Where B
is the basis of the k-dimensional vector space Y)/(B ) . DNow

we are ready for the following definition:

DEFINITION 6 Let Q -< 0,4, 2 > be a FAQQP-structure

or a FQCP-structure. Then the quadruple < Q, P X, > is

- ep

said 1_:_9 b__q a finite qualitative quasi-entropy structure (FQQE-

structure) over @ if and only if the following conditions are

satisfied for all variables running over P :

EO P E‘ ‘Ep_e algebra of finite experiments over H JJ_ denotes

the probabilistic independence relation on P s and % is

—— ——

a binary relation on P,
E, £ = PQ%WQ’%'/)I;
B, (¥B, iz B:C
Es P~ Py= P
B, 4/)2 ﬂ%ﬂl’
s, WP A) =Ry, i

Remarks:

(1) In axiom E5 s the formula concerning characteristic functions can

easily be translated into a system of identities among experiments.
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(ii) There is no doubt that the axioms E. - E_ are consistent

0 5

and independent. The crucial axioms are El& and E_. Axioms El

>

and E2 give the so-called normalization conditions, whereas E3

forces us to consider equiprobable classes of events, rather

than events themselves,

(iii) The definition of an infinite qualitative quasi-entropy

structure for purposes of representation by an entropy measure
on IFD does not cause any fundamental difficulties. The FAQQP-
structure or the FQCP-structure must of course be replaced

by an infinite 6ne; otherwise, we proceed as in the finite

case, In fact,-the axioms are prodigiously complicated and

far less intuitive than those given above. This case will

be omitted here.

(iv) In axiom E,, we must assume the existence of an equiprobable
experiment (C; s for we need this axiom to show that the
entropy measure H is strictly positive for at least one
element from ﬂ:b « An alternative axiom might be 6%24'61’ ’
but this would rule out some elementary algebras E) .

y

(v) Note that the (global) entropy relation = depends on two

factors: on the underlying algebra of experiments and the

independence relation ﬂ defined on this algebra (this relation

is hidden in axiom ES). We do not give here the link between
the FQQE-structure (macro-structure) and the FAQQP-structure

(micro-structure).
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The following easy theorem displays the content of the above

definition:

THEOREM 14 et <Q, P s =, | > be a FQ@E-structure or

8 FQCP-structure. Then for all variables running over (FD and

A, B, Cce & .

(1) f)’%'f);

(@) (pruPs P,

(3) =1 @,-&/’3%/’14@,
W 046 LB f

(5) ~ is an equivalence relation;

6) &=LpL

’

(1 R a, TR (8, T3, )< (4, T, T, T < el U

O Ll 0 BF = PLE, P

) 2 s £, 24, =>F - 7,34, - &, , i
fLredld,,

(10) /7 + £oe 17 /’34'_/11-*/; . /’%'/;:, if
Ll s

W Y (A2d) =>4 <P, i

T_q- J%, ~ ;T:T;é?& & 6ﬁ; _ﬂ_, & éZj_._ﬂ_ ’

i<n i_<_n i_<_n
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(12) ;o ~B) = ia) o, * By, if

{Ai}if_n , (B,

et vi e

The empirical content of Theorem 14 should be clear.

THEOREM 15 (Representation Theorem) Let < @, P , ], >

TR " Lo -
A vy [aye eNe
a ' !~ . (3

be a structure, where £ 1is a nonempty finite set; P is the

set of partitions of @ ; ﬂ_ is the independence relation on [P

As zw Sk

in the sense of Definition 5; and 2 is a binary relation

e

on P o

RSt
“ (;

LR

Then < @, P, <, |l > is a FQQE-structure if and only if

DTN L2 Ay
\ y

there exists a quasi-entropy function H : P —3Re satisfying

’ |
the following conditions for all [':)L, /02 € [P

BRANOEISI KRR Ay
A ) !

1

, (1) A O,=HP) < 5A);
(1) L F,=>5(F - P) =u(L) +H(F) ;

(111) £ = f,=>H( ) < B L) ;

T O
+ i

;]
L ]

r' (iv) H((7) 0 ;

1, if J3~c9

Proof: There is no question of the conditions' not being necessary,

(v)  H()

’{ and we prove here only their sufficiency.
Let <4, |FD P {’ s ll_ > be a FQQE-structure over G . let
’U‘/( B) be the k-dimensional vector space, described just before

Definition 6. We can obviously make P a finite subset of v/(B )
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£ P ;
by assigning to each e 4 a vector {, where

j A _ o f;') . . .
(pl® fe) —fl+(/2. In a similar way =* can be
represented on ’?f/( B) . Having done this, we are ready to
use Corollary 5 taking advantage cof Eh’ E5’ and E3 to switch to
quotient structures. The corollary answers us that there is a

linear functional V : mB ) —>Re , and thus another

functional ¢ :IP-——-)Re , such that the conditions (i), (ii),

and (iv) of Theorem 15 are satisfied by o . E, forces ¢ to be

non-negative on P , and also to satisfy (iii).

Finally, E2 gives o({A, A})) >0, if E~E . Hence,
by putting
R(P) - —20)

o({A, A})

we get the desired quasi-entropy function. Q. E. D.

Condition (iii) in Theorem 15 expresses the most important
property of the entropy measure, namely, its additivity. Unfortumately,
this property is much weaker than (iii) in (3.3), Section 3.2. It
is trivial to show that there are many functions besides (3.2) which
satisfy the above conditions. This lack of specificity explains
the 'quasi-' prefix.

It is well known that the conditions (i) - (v) in Theorem 15
together with the condition

#HP) = £ feP), £:[0,1]—Re, £(L) =1, (38)
Ac
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for some f continuous, are enough to specify an entropy measure
H, in the form (3.2).

In order to guarantee the existence of a continuous function f,
satisfying (3.8), we have further to restrict <§ , and to add
more 'interacting' conditions between < and < .

The following necessary conditions are obvious candidates:

(1) AS Be>(A, A)="(B, B}, if A, BRE~E

.o

.o

(2) A4 B&>(B, B}*'{A, A) , if E~E< A, B

(3) A< Ce=>[B]AB,AB]{* < [B|CB,CBI ), if p2Be P,

B, CAE~E, p2AB, C<20, A] B, C;

(1) B3 <= [B|aB,2B]R < [clac,Ac)® , ir B, Cel’

AlB,c, pRa<10a;

) P=E , it |£1 = 1E1.

It would be incredible if these conditions were sufficient,
At least three axioms or axiom schemas similar to E5 are needed
to guarantee the existence of the sum, multiplication, and log&-
rithm functions in (3.2). Over and above that we need the quali-
tative probability axioms, which we can assume to be given, of course.
Given these axiams, our representation theorem would also
guarantee the existence of a probability measure P such that in
addition to (i) = (v) in Theorem 15 we would have:
(vi) H(P) +H((a, B)) * P(B) = H([B[4B, RB]P) , if Bel’ ,

and Al B, pLAa<q;

*
)See the notation in (3.3), Section 3.2.
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(vif) A< B&»P(A) < P(B) ;
(viii) Al B&>P(A N B) = P(a) * P(B) ;

(x) P 1 WQ@\V'A, B(A ¢ /’l & B e /32=>A1[B) .

It seems to be an open problem to specify the relationship

between the macro- and micro-structures under the given very

restrictive finite conditions. On the other hand, in the next

section we shall show how easy it is to give 'representations'
when we have more topological properties available,
FQQE-structures characterize the macro=properties of the
entropy from qualitative point of view. The reader may have
noticed the following striking formal similarity between the con-

ditional entropy measure and the -(absolute) Probability measure:

D L1 Gty R -uy,
A| B=>P(a - B) = p(a)

QN CRNARS (VAR (VYN AW
P(AUB)=P(B)+P(A-B),

(3) 0<H(L) <P - L) <L)+ 1R,
0<P(A) <P(AUB) <P(a) + P(B) .

This rather primitive one-one correspondence between
flﬂ. 002: '/f)l. fe, Wl//;e and AJ_B, AUB, A-B

contains certainly some heuristic anticipation of a deeper rela-

tionship between the macro- and micro-structures: < @, P s, H>

and <Q, ZC, P> . One can see also why the lattice operation +
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in P has so little use in entropy theory. The more interesting
operetion on P would be the composition of two experiments,
071 N\ [)2 , defined in Section 3.3. The only problem here is
that < P , ¢ s a , * 5 N > camot be embedded into a Boolean
algebra.

We shall now turn to the problem of conditional entropy.
Another interesting similarity between the conditional entropy

and (conditional) probability is the following:
(1) H(L/ F) =H(F - Py -u(H),
P(A/B) = P(AB)/P(B), P(B) > 0,
(2) O | Posu( P/ ) =0/,
A|| Be&>P(a/B) = P(4/0) , if P(B) >0,
(3) WP/ ) =8F, - Py Py -8 Fy),
P(a/BC) = P(aB/C) / P(B/C) , if P(BC) « P(C) > O .
We shall consider these similarities as a heuristic guide to

further developments of entropy structures. One can consider

the entity (f)l/ J’E to be a partition (experiment) in

”/ %[ WE] . Then ﬂl/ J’E is the set of experiments

indistinguishable from /91 , given /)2 .

As in the case of probability structures (see Section 2.k4,
Definition 2) we shall study a kind of composition of entropy
structures. In particular, given the algzbra of experiments

D
<Q, P s & >, we shall study a binary relation < on Px '
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and a special representation function V : E}-———aRe s Wwhich,

among other things, satisfies
3 1’
SO P> R <l U>euP) +W(F) < g, +

yl’LéEP‘

There are several important partial interpretations of this

) - (} p
Poy 313 gl, 0I

relation: First of all, the qualitative conditional quasi-entropy

relation hopefully can be defined as
2 ) ] .
W o=l fy - £, A,53< 8, - d, £>.

Naturally, we can put

A< ), F><< Lo o >

and then the probabilistic independence relation ﬂ_ on experiments

is given by

[’lﬂﬁ2<~></’1, o> <P (5 0 >.

It is clear that we could also talk about positive and negative

dependence notions similar to those introduced for probabilities.

The structure < IFD x[F) R =% > also has independent importance
in algebraic measurement theory, where the atomic formula,

< ﬁL’ ["2 > =< C?l’ 472 > may be interpreted as a comparison

of two empirical campositions of certain physical entities, which

is representable by an inequality between the sum of magnitudes

of a linear physical quantity., In this paper we shall be interested
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only in the entropy-interpretation.

permniTION 7 Let QX =<, &£, ] > be a FAQQP-structure,

Then the quadruple <, ID 3 g' 3 _”_ > 1is said to be a finite

qualitative quasi-entropy difference structure (FQQED-structure)

over @ if and only if the following conditions are satisfied

for all variables running over P :

Do U:D is the algebra of finite experiments over € ; _[L

the probablllstlc independence relation on P and % is a

relation on |2 x I ; o
D, e =< Fp P>R< PP >;
o, <0, P><B, P>, it HBE
D, < £, £,>< <@y Gp>v< ﬂl, o,>2< J)l, /’2>;
D, <, P>3<U, dy>=<, A, > < F, P>
D \7/1<n(<¢D B> <R, S>»)=<S, R >< .4 >,

J)i Qi z
n 1_§n

n i

if

———

f

i .
n 1

IN™M
l/\M
IN™M

i

N

vhere fl, KAi’ 2 17 fi for i=1, 2, vee, n

have the same meaning as in Definition 6.

The remarks to Definition 6 are relevant also to Definition 7.
The content of the definition should be clear; therefore we proceed

to Theorem 16.
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THEOREM 16 (Representation Theorem) et <9, P , %‘ , L >

be a structure, where 2 is a nonempty finite set; P is the

set of partitions of @ ; JJ_ is the independence relation on

in the sense of the Definition 5; and % is a relation on
PxP .

Then <@, P , R, Il > is a PQQED-structure if and only if

there exists a quasi-entropy function H : P —>Re satisfying

the following conditions for all /’1, 002, (;?L, 61?2 € "’J :

@ < f 6>R< A, dy>eu(f) - 5P <u(@,) - H({,) 3

(ii) H satisfies conditions (i1) - (v) of Theorem 15,

Proof: The necessity is obvious. For sufficiency, let < Q,P, -\{ s J]_ >
be a FQQED-structure over @ . ILet V/(B) be the k-dimensional
vector space, described in the proof of Theorem 15. We can transform

P X P into a finite subset of the (external) direct sum

'L)/(B) ) VHB) by assigning to each pair < f°, (/> a

vector 2’ @ & € V(B) 25} mB) . We then proceed

almost exactly as does Scott (D. Scott [ll], Theorem 3.2, p. 245),

so that the axioms D5’ Dh’ D. are justified. As in Theorem 15,

p)

the normalization conditions Dl’ D2 will allow us to construct

a function H (which exists on the basis of D. - DS) with the

3

desired properties (i) and (ii) in Theorem 16. Q. E. D.
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Now if we put
Py G/ He>< Py - Py £>R<d, - W, H,> (3.9

we can easily prove the following theorem with the help of

Definition 7:

THEOREM 17 et <o, P,<X, I > be a FQQED-structure over

a FQCP-structure. Then the following formulas hold, when all

variasbles run over P :

(1) ~ is an equivalence relation;
(2)  OIp R/ f2 5

) HBXBB, i BE
W) PSP PPy

5)  Fpe djd

6)  Clp 2R/ L s

(N L% Lpe ) o0 Pol Py 5
®) Sy PR PSP
O VT PR /s

(10) £/ Py 2 f2, 5

W A =lYp2pips
2 s =Ly Folf = Flps
13) Fiep,=sLS/P 0 ;
(14) @/ﬁeéfl@fluf’e;
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(15) HPRLYP= B IpRF,-d I, i
o 0 ld s
8) £ Pty dy=> (PR Qs /@, R ﬂ/fg)’
AN (AP, 2 lfdy e PyRd) = PR30, &, 5
(18) (1 + o=ty Ay @y 28 = Pf 4 @) o,
W) (1Y o e p32Q/ Dy 52 o/ 5 Wy @5) =
117 Pof P54 4, - 0o W5 5
(200 - ffpst dyc Ay —
(1 Py P3Gy @5 =205 % P5) 5
(21) (£ P, s B d5 & P P54/ A, - (5) ==>
£ - Pof Ps<iy * D @5 5
@) (P ey 20/ @y &ofdy X RYR)> PSPy R YR 5

z i-1
(23) r_‘lm rm & \7/1515 /TT/J LU /1_—5623)-»

n

n-1 n~-1
LITTE =P /TTP,  where 20
5=0 5=0

No more than with Definition 6 can we hope to show that

H L/ L) = - S  P(AB) * log P (4/B) (3.10)
I 2 Ae (f’l,Be 032

without giving same further axioms to link %‘ with the probability

E relation = on ZF .
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It was Khinchin [40] who showed that the conditions
(2) H(L) . P))-H(F,) =Y/ P ;5
(0) 8(F) <u(l&), it |P] =&l ;
(c) H( LU {p)) = H(P) ;

imply the identity
BH(f) = -z P(8) * logp(a) ,
Al
and therefore also the identity (3.10). In our case (a) is true

by definition, and (b) and (c) become valid by adding the following

two axioms:

b, <L, P>3<E, 0 >, it [P =181

D, <Pu), & s~<pP,r >.

Naturally é; must exist, otherwise the axiom D6 would be
vacuously true. Given that, D - D7 imply the conditions (a), (b),

(c) for finite qualitative conditional entropy relations.

3.6, Qualitative Information Structures

The reader may be somewhat disappointed after reading the
previous section by the very general and rather weak nature of the
results on entropy structures. It should be emphasized again,
however, that we cannot expect simple results about fairly com=-

plicated continuous functions in terms of relations on finite

domains.,
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In this section, unlike the earlier ones, we shall work with
infinite Boolean algebras; as we shall see s the results will be
somewhat stronger. We are able to give a definition of information

measure without any recourse to probabilistic notions.

The structure to be studied here is a Boolean algebra %
enriched by two binary relations u_ and =° 5 the relation JJ_

can be interpreted as follows:
A |l Be> Event A is independent of event B (4, BeZ ),
and the =<° is interpreted as before:

A B «>Event A does not have more information than event B

(A, Be &)

The novelty here is that we give axioms for | , <« , and
1 4 which, without recourse to probability theory, ensure the

existence of an information measure in the standard sense,
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The need for a formalization of a notion of qualitative

independence to match the standard probabilistic notion has been

e

felt for a long time, but the author is not aware of any serious

B 1§

attempts to solve this problem, In this section we shall try to

l\m’.vg
T Prey e

work out such a formalization. First, perhaps, we should turn

A

to the definition:

2 ’“-‘N‘N

DEFINITION 8 Let Q@ be a nonempty set, 74 a nonempty family

o oyt o

of subsets of @ such that it is a Boolean algebra, and || ana <0

binary relations on % .
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information structure (QI~-structure) if and only if the following

Then the quadruple <4, Er , <20, ]_l_ > 1is called a qualitative

conditions are satisfied when all variables run over ﬁg :

15

plas;
AlB=B] A;

Al B=>B| 4;

AlBsAa] c=>a]BUC, if B] C;

Q4P ;

AXp;

A<*BvV B <4 ;
ARXBEBC=2A%C;

AlB&eA]| B=>(A<pvBLp ;

A¥Be&esAUCEBUC, if C| A B;

A¢Be>ANC%<BNC, if C| A, B&

A4B&CLD=>AUC¥BUD,

A4+B&CL£D=>ANCLBND,

C<:p;

if B] D;

if Al c&B] D;

If Ai_[_Aj for i#£j&i, j<mn, then

VB 3An+l\v/i <n (LA, &3

If Aill_Aj for 1# 3 &1i, j<n, then

/s HAnﬂ\V/i <n B 1A, &8
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Remarks:
(i)  All axioms but the last two, which force &£ to be infinite,

are plausible enough. Axioms Illp and I._ could be replaced

15

by some kind of Archimedean axioms. Moreover, the reader may

find some relationship to ILuce's extensive (measurement)

system.

(i1)  The axioms can be divided into three classes: First, those
which point out the properties of ﬂ_ 3 secondly, the axioms -~
for < ; and thirdly, the interacting axioms giving the

relationship between JJ_ and < . There is no doubt about :

their consistency.

(iii) Instead of taking a Boolean algebra 44 s We could consider .

a complete complemented modular lattice, in which the relation _|_ -
would become a new primitive notion. In this case our axioms
for l_ and <° come rather close to dimension theory of

continuous geometry.

It is easy to show that Definition 8 implies Theorem 8, if we ' "1

- - 4
3

put AL B&B<°A (A, Belf) . K

For purposes of representation we shall need a couple of

~

notions which will be developed in the sequel. .o

let <Q, 2, €, || > ve a QI-structure. Then M/ ~ =

P

([Alg : Ae ¥}, where [Al, = {B: A~ B} . For simplicity

we put [A] = [A]l, . Now we define a couple of operations on %/'3 :

# ———

(a) [A]+[B]'=[A1UBl], if A1_|_Bl and AlrbA&Bl#B;

() n - [A]l = (n-1) « [A] + [A), O - [A] =[] ;
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(c) [A] * [B]l =1[a NB]J, if A ] B and A “A&B ~B;

(@) [a1™ = [a1®t . a1, (a1°=[o].

Axioms 112 and Il5 will guarantee the correctness of the
above definitions, that is, that they do not depend on the particular
choice of representatives Al’ Bl' The existence of the defined

terms is implied by Ilh and Il Weakening of the axioms Ilh

5&':
and I15 would allow us to define only partial operations + ,

n <
ne (=), v, (=) o Es,
We put, as might be expected,

[A] < [Bl&<>BXA (4 Bell ).

The reader can easily develop the algebra of the ordered
semiring IR = < w/ﬁ s 01, @], +, +, < >. Inpar-
ticular, he can show that the operations * and + are com-
mutative, associative, monotonic, distributive s» and the zero and

unit element act as usual. Obviously, theorems like
me [A]<n- [Ales m<n, provided [A] # [#] ;
[a® < A"« n <m, provided [A] # [0] ;
(mtn) « {Al =m « [A] +n » [A] ;
[A] (m+n) = [A]m . [A]n s, are also true.
Our Representation Theorem for QI-structures is based on the exist ance

of a function o : R ——>Re such that
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(i)  [A] < [Bl<=>0o([A]) < o([B]) ,

(ii) o([p]) = o,

(1ii) o([0]) = 1,

(iv)  o([A] + [B]) = @([A]) + @([B]) , if A B;
(v)  o({al - [B]) = o([Al) - o([B]) , if A [ B.

There are several ways of showing the existence of @ :R —>Re .

We prefer here to use the method of Dedekind cuts of rational numbers.

In fact, the sets c, = {% :m * [U] <n -+ [B]} and

c% = { % . [U™ < [B]®} form a Dedekind cut for fixed U e 1A ,

since

(a) me« [UJ<n-+[BIY n* [Bl<m~* [U] and

" < B1"y [B1" < [U]" by I, )

m D m P
(b) necB&qecBén < : and

B o* o RBoo¥a® o P i tivi
— € s & q € cBé — < a by transitivity.
(e) cg = ;6 s defines O and cg = set of all rationals, defines + o ,

The real number which is defined by the Dedekind cut c A (cZ )
will be denoted by #c A (#CZ) . We shall define two real-valued

functions on [F\D as follows:

*
) V denotes the logical connective 'exclusive or'
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Aruitoxt provided by Eic:

(1) cpu([U]) =u, where O0<u<1l,

cpu([A]) =1 ¢ #CA

(2) CP:([U]) where 1<v< +w,

1
o
-

oj([a]) = v

In the following we shall omit the indices u and v in

. *
functions P, and cpv .
Using the consequences of axioms Il - 115 , 1t is easy to show that

the conditions (i) - (v) hold for ¢ and ¢* . In fact,

o([2]) < o([Bl)e>u * #e, < u » fogém (5 2 me[U] <ne[A]) <

c [% :me* [U] <n - [Bl}&=>{A] < [B] . Similarly things

hold for ¢¥ . If A| B, then o¢([A]) + o([B]) =

u°#cA+u-#cB = u° (#cA+#cB) = n°#(cA+cB) =

=u - #CA y p» @&nd similarly for o .
o([A]) = o([A U B1) = o([A]) + @([f]) , since P | A.

Hence, ([f]) =0 . Again, ¢*([]) = o™([aN#]) =
= ¢ ([A]) » @"([P]) =0, since P || A . 1In view of o[p] < o([0]) ,

we can normalize both @ and cp* by taking

%E%B and cp*"(( [[3]1) '

P T T L T ST I L L T A IR Ty
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Now the fact that @([A]) < o([Bl)eo ([4]) < ¢*([B])

implies the existence of a one-one mapping 1 : [0, 1] - [0, 1]
such that ¢* =n e ¢ .
Since [A] - ([B] + [C]) = [A] ¢ [B] + [A] - [C] , we get }'

o([A] < ([B] + [C])) =o([A] - [B]) + @([A] - [C]) , &and so also
N"H(p*([A1) - o*([B] + [C])) + 0 L(p*([A]) + o*([B])) +

+ 07 (e*([8]) - ¢*([c])) .
For A% Q we get
n"H(o*([B]) + ¢*([C])) = n"X(e*([3])) + n"(e*(IC1)) . i

But this is the Cauchy functional equation for 71 in the

real interval [0, 1] . Using the standard method of solution

of linear functional equations, we get n-l(q)*([A])) =a * ¢ ([4]) , <.
where @ 1s a real positive constant. The normalizaticn of ¢ -
and @° gives finally ¢*([A]) = @([A]) for all [A] e %/3 . =

We can now prove

THEOREM 18 (Representation Theorem) Iet <@, £€, 4°, || > be . -

a QIl-structure. Then there exists a finitely additive probability

measure P on Z£ such that <@, &£, P> is a probability .

space, and 3

(1) A<*B&=»I(4) < I(B) ;

(2) A Be>I(AN B) + I(A) + I(B) ; f
(3) 108) = - Logp(a) . |
Proof: We put P(A) = @([A]) for Ae & . Then from the
previous discussion of ¢ it is easy to see that (1) - (3) ?

are satisfied.,
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CER 2

Clearly all the axiams Il - 113 are necessary conditions

for the existence of the information measure I . Axioms Ilh

are not necessary. We leave open the problem of formulating

15

axioms both necessary and sufficient for the existence of the

and I

measure I.

Aware of the relatively complicated necessary and sufficient
conditions for the existence of a probability'ﬁeasure in an infinite

Boolean algebra & , the author will not go here into further

details.,.

I(A) = - logeP(A) is called sometimes as self-information
of the event A. The next (slightly more general) notion is the

so-called conditional self-information of event A, given event B:

I(A/B) = - logeP(A/B) . A further generalization leads to the

conditional mutual information of events A and B, given event C:

P(AB/C
I(a:B/C) = log, P(A/CT{P)(B/cj .

Naturally, we would like to give representation theorems also
for these more camplicated measures.

In this last case, our basic structure would be the set of
camplicated entities A:B/C (A, B, Ce &, p<4C) and two binary
relations ﬂ_ and < on this set of entities. In fact, it would

be enough to consider the formulas AlzBl/Cl < AQ:BQ/C and

A/c | B/C, since the remainder can be defined as follows:
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A:B X C:D < A:B/Q £ C:D/0 ;
AX*Be4>A:A<B:B;

A/B¥ C/Depa:p/B<C:0/D ;

Al Be2a/o || B/a, where 4, B, C, De & .

Some of the properties of the qualitative conditional mutual

information relation <° are analogous to those of the qualitative

self-information relation. For example,

(8:C)/B) 4 A,:C/B, &'B:D /B & By:Dy/B,) => AB,: 0D, /E, 3-4,B,:C,D /R, ,
it A/E | B/8 s c/m | /8, & az/E | C;D/E, , i=1, 2.,
We do not intend to develop further details here, because of
the rather complicated nature of these properties. Note that we
have several notions interacting here: conditional events s the
independence relation, and the mutual information relation. Fram
the point of view of algebraic measurement theory the problem is

to give measurability conditions for very camplicated relations

defined on the above-mehtioned complex entities.

4.  APPLICATIONS TO PROBABILITY IOGIC, AUTOMATA THEORY, AND
MEASUREMENT STRUCTURES

4.1. Qualitative Probability Logic

In methodology of science » inductive logic, and in philocophy.

generally, it is customary to consider the probability of statements

rather than the probability of events. But even in the field of
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applied probability theory we quite often appear to speak of
probabilities of statements rather than of sets. For example,

we talk about the probability that the 'random variable ¢ is

not greater than the random variable 1 ,' instead of taking the
probability of the set [(w e @ : &(w) <n(w)} . This case, indeed,
is nothing to worry about, since the appropriate translation from
statements into events is immediately obvious. The main problem
comes in when we want to talk of the probability of a statement
containing quantifiers. The standard probability space Aﬂ\ =

= <Q, 174 , P> takes care at best only of the countable cases,

so that the logical operations :Hx R \V/k are often not adequately
represented by the o-operations in Zﬂt ; especially, when x runs
over an uncountable domain. Consequently, the problem arises of

how to assign a reasonable probability to quantified statements.

The basic idea, following Scott and Krauss [20], is quite simple.

We turn the Boolean algebra 1A , given in A s, into a complete
Boolean algebra by takiﬁg the quotient ZZOer,, modulo the

o-ideal ZXP of sets of measure zero. Then arbitrary Boolean
operations are admitted. In addition, P +turns into a strictly
positive measure on 527 ASP o Therefore, if we assign homo-
morphically to every first-order formula an element of 527 A&P s O
trouble will arise from using any sort of quantification. This should
be clear enough., But the trick is not so innocenti: Since ”/AP

satisfies the countable chain condition, all Boolean operations
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actually reduce to countable ones; therefore the quantified formulas
will get probabilities regardless of whether they are defined on
a countable domain. Clearly some big Boolean algebras may be needed.
But then we may not be able to guarantee the existence of a probability
measure. Probability with values in a non-Archimedian field still
may exist, but then we are faced with a problem of interpretation.
In the author's opinion, the problem can be solved by considering
8 qualitative probability structure < Q, &, X > for which,
eventually, we will be prepared to give up the validity of the
representation theorem. In fact, the formula A<{B for A, Be 2t
has a perfectly good meaning or content in the above-mentioned
fields, be it representable by a probability measure in the sense
of problem (Pl) or not. In particular, EE can be arbitrarily big,
if needed. What matters now is only an appropriate way of assigning
Boolean elements to formulaé.

For this purpose consider a first-order language dC:=
= <V, F, Py =, v ,&,:},4—;, v, 3 >, where V
denotes the set of variables Xy ¥y 2, Vy Wy, ee., F the set of
functors, P the set of pPredicates, and the remaining symbols
stand for logical comnectives and quantifiers in the usual way.
Simplifying the problem, without losing generality, we shall con-
sider Just one two-place functor ® €' F and one binary predicate
pebP., We def'ine recursively first-order formulas over ‘K:
in the well-known way, If needed, we may include among the logical

symbols also the identy predicate = . We shall introduce Boolean
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models as probabilistic intended interpretations of AC . The aim
is here to replace the truth values of ordinary logic by values in
EE; then a formula is valid if it has value @ , and invalid if
it has value P . The various 'truth values' are ordered by the
gqualitative probability relation < of the qualitative probability

structure A = < Q, &% ,x > which will be held fixed throughout

this section.

A nonempty set .S together with a mapping = : S X S —» &

is called a Boolean set (A -set) if and only if for all a, b, c € S

(1) [a=a] =0 ;

*
(ii) [a=Db -b=a] =0 ; )
(iii) [a=bNb=c —a=c]l=Q, where a=b = =(a,b) .
We could think of several mappings = on S , and they would

yield different Boolean identity relations on S . If there is no

danger of confusion we shall use S to refer to the structure

<S8,=>, and S, 5., 5 will be variables for Boolean

l,_ 2, oeoe
sets. Hence, roughly speaking, a Boolean set is Jjust an ordinary

set in which the natural identity is considered in terms of a

Boolean-valued logic.

* —

)If A, Be Z£ , then A - B. denotes AU B . There
should be no confusion with the mapping f fram A into B:
f: A—B.
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If = denotes the strict equality = and Z£€ is s two-
element Boolean algebra, then < S, => is equal to S ,

A mapping R : S X S — Re is called a Boolean binary relation

(A -relation) iff for all a, b, ¢, @ € S
[a=cNb=d) - (aRb - cRd)] = Q. ,
where &Rb = R(a,b) .

It should be clear how one could define more general relations,
A Boolean relation R , defined on a Boolean set S s forms

a Boolean relational structure (A -structure) < S, R> .

A mapping f : S XS S is called a Boolean binary operation

( A -operation) iff for all a, b, ¢, d € S
[@=cNb=4d) -f(ad)=rlcd)] = 0.

It is immediately clear how one gives a definition of Boolean

functions.

A Boolean set S, together with a Boolean relation R and a

Boolean operation f on it, defines a Boolean structure < S, R, £>,

Now we are ready to interpret the language oc in a Boolean
structure < S, R, £>, and give a definition of the qualitative
12 <I>2 are .formulas of £ .

We give values to variables X, ¥, 2z, .eo oOf V 1in the

probability formula ¢l< <1>2 , where ¢

Boolean set S ; ¢ will denote a Boolean operation f in S
and p will denote a Boolean relation R on S . Having done

this, we get a possible Boolean model @‘7: <S5, R, £> for oC .
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If the values of X,y are X, ¥y € S, then the value of the
term @ xy is f(%X,y) . It is obvious how to extend this

definition recursively to all terms.
*
Now the valuvation [ ] ) of formulas of L one)p
into l%’ is defined recursively as follows:
(1) [ P17, !y = R 1%, , in particular, { T, =T, LV =
= T, = T

(ii) [—1<I>]J=l¢]af- ’

o 3

(iii) [<1>1v <1>2]J = ”’119/ U”’elef’ ;
(iv) IV xo !f = A[ d(a) !f , it o(a) = [x|alo ;

aes

vwhere Ty Ty denote terms, O, <I>l, <I>2 formulas of &L , and

[x|a]® is a substitution operation in the metalanguage of L.

We can put

(Dl %ch)e@l(pl!f‘% [4)2]0), ’

and interpret ¢, AJ, ¢, as follows: formula @, in the model o

is not more probable than formula <I>2 o

Considering all possible valuations | !f we may define
24
<1>1-% <1>2<->[ o, b,% [ o, ]cf 'for all . ,

and obtain a qualitative probability structure of first-order formumlas

<[F, { >, in which, hopefully, the mentioned methodological

*
)This ingenious notation is due to Scott and Krauss [20].
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problems of empirical sciences can be studied.
Sametimes we start with a first-order theory 9’ and take

the class of all its models Mj"' Then clearly
@e,‘/\'-).[@!f, ~Q for all ‘)”e MJ .

Note that in a qualitative probability structure of formwlas
< F ’ < > we are given a priori a fixed structure A =
= <9, 2%, <X >; and in the case of < F , &ef> two
structures, /A\ and c)o o« The choice of Q)p is given by

empirical interpretation, but it is not clear, on the basis of

which criteria should we choose A .
One way of answering this question would be to associate

with R a random relation R¥ , that is, a mapping

*
R¥ : Q ——>..£D(SXS) ,) for which

\A,bes[{w : aR&‘)b] celd 1.

The random relation R* 1is a randam variable which takes as
possible values ordinary relations on S . Now the randomization

may be dictated by the empirical interpretation. In particular,

we may be forced to take a special Q , and IAA will be given

by the conditions of observation. The subtlety of the events we

*
)If A is a set, then .ZD(A) denotes the set of subsets of A.
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can observe will motivate us to choose an appropriate algebra

from the lattice of algebras over © , ordered by the finer-than

relation: Zz"l © /[, . Tinally, the probability relation =
is given by the random mechanism of R¥, If the randomization
of R 1is not possible, we have to choose Aﬁ\ subjectively.
If <0, 8%, < > is a qualitative conditional probability
structure, then we can define the qualitative conditional probability

relation on formulas. from HT- as
0,/0,R ¥, /¥, |<bl|/|<b2|4[\yl]/lw2|.

If we proceed in the same way as above and take a semiordered
qualitative (conditional) probability structure, we can define
notions like acceptability, rejectability, and the like. If needed,
we can remove the condition that 225 be a Boolean algebra, and
consider Z%g as a lattice.

We shall not develop any specific details of these notions

here.

4.2. Basic Notions of Qualitative Autamata Theory

In this section an application of qualitative probability
structures to probabilistic automata theory will be presented.

Automata theory is considered as a part of abstract algebra.
Deterministic automata theory is a vefy well developed discipline,
whereas probabilistic automata theory is still at the beginning
stage. An excellent review of the subject can be found in

R. G. Bucharaev [59].
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Probabilistic automata represent empirical discrete systems
in which statistical disturbances (noise) or uncertainties have
t0 be taken into account. It is assumed also that the system has

two channels: the outgut and transition chamnels.

From a formal point of view, & probabilistic automaton is
* .
a many-sorted structure ) <=, ©, £, H>, vhere =, ©, £ are
finite nonempty sets (the set of iaputs, the set of outputs, and

the set of (internal) states) and H is a conditional probability

function assigning to each 'conditional event' (0,s')/(e,s)
(where 0 € ® e €Z, and s, s’ € £) the probability that
the automaton transits to state s' and produces output O, given
that the automaton is in state s with input e.

From a purely conceptual point of view, instead of taking H
to be a mapping as above, that is, H: = X T —(® x 5), where
“EXG X £) denotes the set of probabilistic distribution functions
over © X £, we can consider H to be a more general sort of
mapping. In particular, we call the automaton <=, ©® %, H>
Boolean if H: =X X —> zzg@ x £, vwhere ff is a Boolean
algebra.**) Then H((0,s')/(e,s)) = the Boolean (truth) value of
the statement that the automaton transits to state s' and produces

output o, given that it is in state s with input e. In the Boolean

algebra Z%f we can have a qualitative probability relation =$ 9

*
) By a many-sorted structure we mean a structure which has
several different domains (universes).

X%
) If A and B are sets, then AB denotes the set of mappings
from B into A.
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and therefore we can consider the qualitative probability formula
! 1 —

(Ol,sl)/(el,sl)=£.(02,s2)/(e2,s2) (Ol’ 0, €8 eg,e,cs,

» 8!, s,, s} € £) with the obvious interpretation. Since we

1’ 17 22 "2
would not want to bother about the meaning of the algebra f?f ’

S

we shall proceed in a more straightforward way, namely, by replacing
the function H by a qualitative probability relation. For this

purpose, we have to consider input events (take just the elements

of _ﬁP(E)) and state events (take the elements of._f?(z)). More

specifically,

if 0., 0, e fe), eys &5 € 5, 81, 85 e £2(2),
1 f
Sl’ S2 € Z’ then (Ol’sl)/(el’ sl) -’% (02’82)/(82’ S2)® (h' 1)

the cutput event Ol and the state event Si given

input e, and state s, are not more probable than the

i 1

output event O, and the state event S! given input e

2 2 2

and state s2 .

This is the intended interpretation which we shall deal with.

First comes the definition

DEFINITION 9 A many-sorted structure <=, 0, £, * > is

called a finite qualitative probabilistic automaton (FQP-automaton)

if and only if the following conditions are satisfied for all

variables running over appropriate sets as explained in (4.1):

My = 6, and I are finite nonempty sets (input, output, and

state sets); and <L is a binary relation on
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o) xf(z) X Z X I, where the formula generated by =
is written as in (4.1);
NIl (¢,¢)/(el’ Sl) ‘% (@,Z)/(eQ,SQ) ;
M (¢)¢)Il(elysl) A (0,3')/(82,82) 3
M (ol’S]'.)/(el’sl) % (02,Sé)/ (32)52) \4 (02,Sé)/(82,82) '\{ (ol’S],.)/(el’sl);

K Vi < nl(0358;)/(ey,5:) 2 (Q3,81)/ (e¥,59)]

(Q,8,)/ (e¥,s%) R (0,8 )/ (e ,s ) if (0;,8,)% / (e;,s,) =

X
i<n

. 3 ] (Q;,81)" / (e¥,s%)

We have mentioned many times that the characteristic function
occurring now in Mﬁ, can always be eliminated. To be completely
clear, we put [(O,S)“/el,sl](o,s) =1 iff oeO0O&s eS$S,
otherwise zero. After those experiences obtained from manipulations
with probabilistic relational structures, we might suspect that
this definition is just the 'qualitative version' of the standard
definition of probabilistic automaton. In fact, the following

theorem can be easily proved.

THEOREM 19 Let <=, 8, %, « > be a many-sorted structure,

described by axiom Mb in Definition 9., Then it is a FQP-automaton

if and only if there is a function H: = x 5 — &)(0 X £) such

that <Z, © £, H> is a probabilistic automaton (especially,

H((o,s')/(e,s)) 1is non-negative and £ H((o,s')/(e,s)) = 1),
o€l
s'exy
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and (o),s1)/(eg,5,) R (0,,51)/ (e,,5,) e H((0],51)/(e),5,) <

< H((o,, sé)/(e2, s5)).

Taking H in the probsbilistic automaton =<3z, ©, £, H>
to be a special function, we obtain, amongst others, the following
classes of automata:

(i) C  is called a Mealy-autamaton iff H((o,s')/(e,s) =
= H(o/(e,5)) - H(s'/(e,s))

(i1) € is called a Moore-autamaton iff H(of (e,s,s')) = H(o/s') .

(iii)  is called a probabilistic automaton with random output

and deterministic transition iff

H(s'/(e,s)) =1, if :Hf[s' = f(e,s)] , and zero otherwise.

(iv) C is called a probabilistic automaton with random transition

and deterministic output iff

H(o/(e,s)) =1, if :gf[o = f(e,s)] , and zero otherwise,

A special case of the Moore-automaton is the Rabin-automaton

<=, %, ¥, H> where ¥Y={s :s €% &g(s) =1}, where g is
a mapping from £ to © .
The qualitative version of these automata is quite obvious.

In the case of Mealy-automata we have to require that o/(e,s) || s'/(e,s);

and the sppropriate axiams can be stated easily by using the results
of Section 2.6 on qualitative conditional probabilities. Similarly,

the Moore~automaton is specified by the requirement o/s' ﬂ.(e,s)/s' .
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Notions like subautomaton, isomorphism and homomorphism of
automata, reduction of states, direct sum and tensor product of
automata, are quite easily defined. Since we are not going to
develop any specific theory about the properties and mutual rela-
tionships of those notions, we shall not give any further definitions.
The notion of the evert x realized by qualitative probabilistic
automaton is also easy to define.

If somebody wants to study semiordered qualitative probabilistic
automata, he is welcame to do so. All obvious combinations of these
notions are hardly supported at the present time by any empirical
problem, On the other hand, from a theoretical point of view,

they represent a good source of mathematically interesting theories.

k,3, Probabilistic Measurement Structures

The notion of a relational structure is fundamental in most
current empirical theories, Various ordering structures furnish
the common idealization of a large number of mathematical, physical,
behavioral, and other scientific conceptual structures in which
the notion of a relation occurs., However, in numerous instances
in which these relational structures are applied, the situation
or the problem is rather over-idealized. This is evidently the
case, for example, in measurement. If the relations are determined
by experiment or observation, undoubtedly they must be supposed to
depend on chance., In repeated experiments or observations (under

fixed conditions) we do not get unvarying results, because of
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'noise,' an unavoidable phencmenon with statistical structure.
For instance, it is quite common to describe the measurement of
weight of a given set of objects using an equal-arm balance system
by a binary relational formula a R b (cbject a is less heavy that
object b). This method is completely correct if the weight-difference
of ohjects a and b is essentially greater than the friction in the
balance system and the statistical disturbance factors. But in
the case of precise measurement with relatively small weight-differences
the relation R would not serve as an adequate notion for the meas-
urement problem. In this case we cannot use any more the 'yes-no!
answers given by a Rb or bR a » for if we repeat the measurement
act several times, we may get different results contradicting each
other. The relation a R b would hold with certain probability,
approximated by the relative frequency of occurrences of & R b .
Therefore the relation R has to be replaced or interpreted as
a randam relation which takes as Possible values the ordinary
relations. But then the appropriate order-homomorphism of this
(randan) measurement structure into the structure of reals must
be randam, too, In Physics, clearly enough, classical quantities
have to be considered as randam variables, if their magnitudes are
small and the molecular or other fluctuations are taken into account,
In econometrics or in psychology, especially in preference and
utility theory, it is a well-known fact that inconsistencies may
occur in a subject's preference ordering. The reason for this is

simply that we are unable to perceive all relevant characteristics
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of the objects on which the preference is defined. Here again
the random or probabilistic relation is the sppropriate notion.

A Boolean relational structure < S, R > is called a qualitative —

probabilistic relational structure over <&, 2 , R > iff

there is a random relation R¥ on @ corresponding to R ; Z[ } '
is the Boolean algebra over which < S, R> is defined, and <

is a qualitative probability relation on % . If we replace 2

by a probability measure P we get a (numerical) probabilistic —

.

relational structure.

Note that qualitative probabilistic relational structures

f R ey
S

are generalizations of ordinary relational structures. 1In fact,

:.mﬂsl

all theorems and definitions of algebraic measurement structures
given, for example, in Suppes and Zinnes [58] have probabilistic —

counterparts. We shall take one example. ..

DEFINITION 10 A qualitative probabilistic binary relational

structure < S, R> over <4, 174 s L > .is called a qualitative

probabilistic semiorder (QPS-structure) if and only if the following . I

axioms are valid for all x, y, z, we€ S5 :

Vv, IxRx|~p;

l -

i
V, [xRy&zRw = (Rwv zRy) | ~Q ; L
V3 [ xBy & yRz = (xBw v wRz) | ~Q

,*—-ﬂ-"""”"«l
1
I S

If <S5, R> 1is a QPS-structure, then

(1) [ xRy &zRw } { [ xRw v 2Ry | ; L

(2) | xRy &yRz ] 4 | xRwwv wRz | ; [
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(3) IxRy & yRz 1€ [ xRz ] ;
(4) I xRy 1< yRx].

The proofs would be worked in Boolean logic and then V2 and
V3 would be applied. In fact, the proof goes exactly the same way
as in ordinary logic, so that there is no need to repeat it here.

Even the representation theorem goes through, if we rewrite

its proof into Boolean terms:

THEOREM 20 Iet <S5, R> be a finite qualitative probabilistic

structure over < Q, €&, 4 > . Then it is a QPS-structure

*
if and only if there is a random function U : S —— Ra ) and

2 random variable 7> O such that for all x, y € S :

[ xRy | « lU(X)ZU(Y)"‘TIl"’Q-**)

The proof is analogous to the case of ordinary semiorder
structures. Note that [ U(x)>U(y) +1 1« {we® : Uw(x) >
> Uy) +8,) e oo

As a consequence we get | xRy | ~ [ U(x) > U(y) + 4 | which
turns into equality in %/~ .

Choice theory also gets its probabilistic version along these

lines. A probabilistic linear ordering structure < S, R> is

savch MR i S SRR S R Y

*)

Ra denotes the set of random real variables,

**)If A, BeX then A «> B denotes AB U AB
¢4 s i
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represented by a probabilistic utility function U: S ——Ra,

where

xRy 1~ 1 U(x) <U(y) ] forall x,yesS.

The relationship between probabilistic and ordinary relational

structures can be given nicely by the following comutative diagram:

U

e . E
u

<S, R > »~ < Re, < >

vhere for x, y € S : I xRy 1 ~ 1 U() <U(y) | ;
xRy <> u(x) < uly), and EU(x) = u(x), EU(y) = uly),

e(R) = R, -

Roﬁghly speaking, the ordinary relationasl structures are the

'averages' of probabilistic relational structures.

In ranking theory the well-known special sorts of probabilistic

transitivities (see J. Marschak [60]) assure, in the qualitative
version, the following form:

Iet <S5, R> be a qualitative probabilistic relational structure
over < O, £¥, X > and let A~A for some A e &f .

Then R is called

(1)  weekly transitive iff (A4 [ xRy & yRz | =A< [ xRz |) ;

(i1) moderately transitive iff (A4 [ xBy & yRz | =»

I xRy &yRz | £ [ xRz ] ;
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(1ii) strongly transitive iff (A< | xRy & yRz | ==

[xRyvyRz 1 | xRz 1 ;

where X%, ¥, 2 €5 .

There are many interesting problems here which we cannot

discuss in this work.

5. SUMMARY AND CONCLUSIONS

5%1. Concluding Remarks

The main contribution of this work is stated in 10 definitions
and 20 theorems. We have been studying in detail and under various
conditions the properties of two binary relations =% and <§ H
the first one on Boolean algebras, and the second one on lattices
of partitions. The results are quite general and simple, especially
in finite structures.

Our basic concern was to show that probability, entropy, and
information measures can be studied successfully in the spirit of
representational or algebraic measurement theory.

The method used here is based on the most general results
of modern mathematics, which state a one-one correspondence among
relations, cones in vector spaces and the classes of positive
functionals.

The main problems, stated in Section l.l, have been solved

in sufficient detail. In particular, we followed Scott in discussing
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the complete answer for (Pl). Answers were obtained for (P2) and
(PB) only in the finite case and in a special form.

As applications, we solved similar problems for entropy, informa-
tion, and automata,

As side problems, we discussed several conditional entities
like A/B, A/P, and 6%//% in a set-theoretic framework. We
studied also the basic properties of the independence relation ﬂ.,
and quadratic measurement structures. Various applications in
logic, methodology of science, and measurement theory were indicated.

We have experienced the difficulties of measurement problems
in the nonlinear case. Yet, only the successful solution of such
cases is likely to persuade anyone to the importance of algebraic
measurement theory, a theory which at present is still in rather
& poor state,

As noted in Section l.1, several people have tried to develop

semantic information theory. In the author's view, it can be very

well reduced to the standard information theory, because the set

of propositions, on which semantic information measures are defined,
forms, under certain rather weak conditions, a Boolean algebra.

We do not think that there is much of learning about information
measures on propositions, before a satisfactory theory of probebility
on first-order languages is developed., ' Probabilities of quantified
formulas may then give something new. Beyond that there is the
prospect of studying entropies in first-order theories and, perhaps,

of answering same of the methodological questions Posed by empirical
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theories. But any such advances will have to be preceded by eluci-
g dation of the structure of the independence relation on the set of
i quantified formulas, the structure of the set of conditional formulas,
and so on. It may be that a purely qualitative approach would be
more fruitful to begin with. Concerning these problems, in this
study only the elementary facts have been stated.

The probability relation =$ is usually associated with
subjectivist interpretations. The author has tried to show that
the interpretation is unimportant; what matters really are the
measurement-theoretic properties of this relation. Because of
;s this, various semiorder versions of this relation have been also

studied.

3 5.2. Suggested Areas for Future Work, and Open Problems

:ﬁ In this work several important problems have been left open,
and others emerged during the research.

In particular we have not given any answer to the problem of
uniqueness of probability, entropy, and information measures. In
problem (Ph) we were unable to prove the multiplication law for
the conditional probability measure.

Our study is entirely algebraic; we have not tried to introduce
? én& topological assumptions for the relations '4- s <§ 3 Yyet
1t is reasonable to assume that the answers to problems (P2),

(P5)’ and (Ph) in the infinite case will lean heavily on the

topological properties of ‘% in % .
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We have been studying the structures <@, £¢, |® > and
<4, P , %‘ > intrinsically; no doubt, mutual relationships
between these structures have also some importance in illuminating
the empirical notions of a micro- and macro-structure. Thinking
along these lines, we could consider the category of qualitative
probability structures and study their basic algebraic properties
externally.

The structures <0, £¢ , < s>, <9, or, <, I>,

and <Q, P , <, Jl > have not been studied enough. We do not
know, for instance, the necessary and sufficient conditions far

pairs <R ,[>, <<%,[>, and < %, > in order to

be able to find appropriate probability, information, and entropy
measures, respectively.

Yet another question is to determine the conditions to be
imposed on the structures <Q, £¥, % , | > and <Q,P 2, 1>
to ensure that the representation by information I and entropy H

have the more specific form:

A4B &> £+ I(A) < I(B), 0 <& < +w, A Bedd,

f P12 Pre=> e+ H(F) < B L), 0<E< +w,
fl’ ‘,)2 € P *
This question is motivated by the problem that arises in algebraic -

measurement theory when, because of errors, we have limited dig-

tinguishability. &
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A further generalization of the problem occurs when the error,
rather than being constant, is taken as a function &  of the event A
or experiment Jg .

Another problem is to find those conditions that must be imposed
on <Q,&(,=3\ ,ﬂ> or <Q,P ,-a(',ﬂ_> for the probability
occurring in the information or entropy measure to have a specific

distribution (Bernoulli, Binomial, Gaussian, for instance). In

this case we might hope that the measures will be unique up to some

reasonable group of transformations; moreover, the qualitative way

of proving theorems may be more straightforward.

We have not given too many details about quadratic (or, generally,

|
nonlinear) measurement structures in physics. Yet, there are
? clear measurement problems connected with the representation of
‘ such quantities for which the sn-theorem holds.
1 Some of the questions of probability logic, probsbilistic
i automata theory, and probabilistic measurement. theory appeared
to be important and we hardly could touch them.
i The author is clearly aware of the rather introductory character
of this study to the vast field of open problems in the measurement-
} theoretic approach to the notions of probability, information

F theory, and methodology of science; he hopes that further results

will be forthcoming.
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